Lactate Promotes the Second Cell Fate Decision in Blastocysts by Prompting Primitive Endoderm Formation Through an Intercellular Positive Feedback Loop That Couples Paracrine FGF Signalling.
Xiao Hu, Yawen Tang, Wei Zhao, Juan Liu, Zhize Liu, Qianyin Yang, Meiqiang Chu, Jianhui Tian, Lei An, Shumin Wang
{"title":"Lactate Promotes the Second Cell Fate Decision in Blastocysts by Prompting Primitive Endoderm Formation Through an Intercellular Positive Feedback Loop That Couples Paracrine FGF Signalling.","authors":"Xiao Hu, Yawen Tang, Wei Zhao, Juan Liu, Zhize Liu, Qianyin Yang, Meiqiang Chu, Jianhui Tian, Lei An, Shumin Wang","doi":"10.1111/cpr.70088","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate has been widely recognised as an energy source and metabolic by-product, but increasing evidence supports its critical role as a signalling molecule or epigenetic substrate. During early embryogenesis, lactate production increases during the transition from early to late blastocyst, coinciding with the differentiation of inner mass cell (ICM) into epiblast (EPI) and primitive endoderm (PrE), termed the second cell fate decision. However, the role of this hallmark metabolic change in the second cell fate segregation remains unknown. Herein, using in vitro and in vivo models, we found lactate production is preferentially increased in PrE cells and is essential for ICM differentiation into PrE. Mechanically, increased lactate in PrE precursor cells and FGF signalling in EPI precursor cells reciprocally activate each other and synergise to prompt PrE specification, forming an intercellular positive feedback loop essential for this lineage commitment. Additionally, lactate enhanced histone lactylation levels during differentiation into PrE fate. Thus, our findings construct a complex multilayer model in which intracellular metabolite in PrE cooperates with intercellular growth factor signalling from EPI to regulate early embryonic lineage commitment. Highlighting the multifaceted lactate's function, our findings also advance the current knowledge that bridges epigenetic reprogramming and metabolic remodelling during early embryonic development.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70088"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70088","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactate has been widely recognised as an energy source and metabolic by-product, but increasing evidence supports its critical role as a signalling molecule or epigenetic substrate. During early embryogenesis, lactate production increases during the transition from early to late blastocyst, coinciding with the differentiation of inner mass cell (ICM) into epiblast (EPI) and primitive endoderm (PrE), termed the second cell fate decision. However, the role of this hallmark metabolic change in the second cell fate segregation remains unknown. Herein, using in vitro and in vivo models, we found lactate production is preferentially increased in PrE cells and is essential for ICM differentiation into PrE. Mechanically, increased lactate in PrE precursor cells and FGF signalling in EPI precursor cells reciprocally activate each other and synergise to prompt PrE specification, forming an intercellular positive feedback loop essential for this lineage commitment. Additionally, lactate enhanced histone lactylation levels during differentiation into PrE fate. Thus, our findings construct a complex multilayer model in which intracellular metabolite in PrE cooperates with intercellular growth factor signalling from EPI to regulate early embryonic lineage commitment. Highlighting the multifaceted lactate's function, our findings also advance the current knowledge that bridges epigenetic reprogramming and metabolic remodelling during early embryonic development.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.