CDK12 Inactivation Attenuates Prostate Cancer Progression by Inhibiting BNIP3-Mediated Mitophagy.

IF 5.6 1区 生物学 Q2 CELL BIOLOGY
Mengjun Huang, Hanqi Lei, Tongyu Tong, Hailin Zou, Binyuan Yan, Fei Cao, Yiting Wang, Qiliang Teng, Bin Xu, Juan Luo, Yupeng Guan, Shaohong Lai, Peng Li, Jun Pang
{"title":"CDK12 Inactivation Attenuates Prostate Cancer Progression by Inhibiting BNIP3-Mediated Mitophagy.","authors":"Mengjun Huang, Hanqi Lei, Tongyu Tong, Hailin Zou, Binyuan Yan, Fei Cao, Yiting Wang, Qiliang Teng, Bin Xu, Juan Luo, Yupeng Guan, Shaohong Lai, Peng Li, Jun Pang","doi":"10.1111/cpr.70091","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial stress-induced mitophagy plays a critical role to maintain cellular homeostasis; however, in cancer cells, this process may also contribute to drug resistance. Our previous work identified CDK12 as a critical regulator of prostate cancer (PCa) cell survival under sustained enzalutamide exposure, though the precise mechanism remains to be elucidated. In this study, we hypothesize that CDK12 plays a key role in mitophagy regulation under mitochondrial stress, potentially modulating PCa cell resistance to enzalutamide, the first-line clinical medication in PCa therapy. Utilising multiple in vitro PCa cell models, we demonstrate that both CDK12 knockdown and pharmacological inhibition with THZ531 impaired mitophagy following treatment with enzalutamide and mitophagy inducer CCCP. Mechanistically, our finding reveal that CDK12 inhibition disrupts FOXO3-induced BNIP3 transcription, thereby preventing receptor-mediated mitophagy and sensitising PCa cells to enzalutamide. This study identifies the CDK12-FOXO3-BNIP3 pathway as a novel regulatory mechanism governing mitophagy under mitochondrial stress. Importantly, these results underscore CDK12's role in preserving mitochondrial function and promoting PCa cell survival during enzalutamide treatment. These findings highlight the therapeutic potential of targeting the CDK12-BNIP3-mitophagy axis in combination with antiandrogen therapies, offering a promising strategy to overcome drug resistance in PCa and improve clinical outcomes.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70091"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70091","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial stress-induced mitophagy plays a critical role to maintain cellular homeostasis; however, in cancer cells, this process may also contribute to drug resistance. Our previous work identified CDK12 as a critical regulator of prostate cancer (PCa) cell survival under sustained enzalutamide exposure, though the precise mechanism remains to be elucidated. In this study, we hypothesize that CDK12 plays a key role in mitophagy regulation under mitochondrial stress, potentially modulating PCa cell resistance to enzalutamide, the first-line clinical medication in PCa therapy. Utilising multiple in vitro PCa cell models, we demonstrate that both CDK12 knockdown and pharmacological inhibition with THZ531 impaired mitophagy following treatment with enzalutamide and mitophagy inducer CCCP. Mechanistically, our finding reveal that CDK12 inhibition disrupts FOXO3-induced BNIP3 transcription, thereby preventing receptor-mediated mitophagy and sensitising PCa cells to enzalutamide. This study identifies the CDK12-FOXO3-BNIP3 pathway as a novel regulatory mechanism governing mitophagy under mitochondrial stress. Importantly, these results underscore CDK12's role in preserving mitochondrial function and promoting PCa cell survival during enzalutamide treatment. These findings highlight the therapeutic potential of targeting the CDK12-BNIP3-mitophagy axis in combination with antiandrogen therapies, offering a promising strategy to overcome drug resistance in PCa and improve clinical outcomes.

CDK12失活通过抑制bnip3介导的线粒体自噬减缓前列腺癌进展。
线粒体应激诱导的线粒体自噬在维持细胞稳态中起关键作用;然而,在癌细胞中,这一过程也可能导致耐药性。我们之前的工作发现CDK12是持续暴露于恩杂鲁胺下前列腺癌(PCa)细胞存活的关键调节因子,尽管其确切机制仍有待阐明。在这项研究中,我们假设CDK12在线粒体应激下的线粒体自噬调节中发挥关键作用,可能调节PCa细胞对enzalutamide的耐药性,enzalutamide是PCa治疗的一线临床药物。利用多个体外PCa细胞模型,我们证明了在使用enzalutamide和线粒体自噬诱导剂CCCP治疗后,CDK12的敲除和THZ531的药理学抑制都损害了线粒体自噬。在机制上,我们的发现揭示了CDK12抑制破坏foxo3诱导的BNIP3转录,从而阻止受体介导的有丝分裂和使PCa细胞对enzalutamide敏感。本研究发现CDK12-FOXO3-BNIP3通路是线粒体应激下线粒体自噬的一种新的调控机制。重要的是,这些结果强调了CDK12在enzalutamide治疗期间保持线粒体功能和促进PCa细胞存活中的作用。这些发现突出了靶向cdk12 - bnip3 -线粒体自噬轴联合抗雄激素治疗的治疗潜力,为克服PCa耐药和改善临床结果提供了有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信