CellsPub Date : 2025-07-21DOI: 10.3390/cells14141125
Amir Damouni, Dániel J Tóth, Aletta Schönek, Alexander Kasbary, Adél P Boros, Péter Várnai
{"title":"Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP<sub>3</sub> Measurements in Mammalian Cells.","authors":"Amir Damouni, Dániel J Tóth, Aletta Schönek, Alexander Kasbary, Adél P Boros, Péter Várnai","doi":"10.3390/cells14141125","DOIUrl":"https://doi.org/10.3390/cells14141125","url":null,"abstract":"<p><p>Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP<sub>3</sub>)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP<sub>3</sub>, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP<sub>3</sub> avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP<sub>3</sub> signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141118
Torry A Tucker, Erminia Massarelli, Luis Destarac, Steven Idell
{"title":"Research Priorities for Malignant Pleural Organization with Loculation and Failed Drainage.","authors":"Torry A Tucker, Erminia Massarelli, Luis Destarac, Steven Idell","doi":"10.3390/cells14141118","DOIUrl":"https://doi.org/10.3390/cells14141118","url":null,"abstract":"<p><p>Malignant pleural effusion (MPE) can lead to pleural organization with loculation and impaired drainage. This condition is becoming increasingly more common due to advancements in cancer therapy and extended patient survival. Factors such as repeated thoracentesis through an indwelling pleural catheter (IPC), intrapleural bleeding, and tumor progression contribute to MPE organization. Loculated MPE causes breathlessness and reduced quality of life, and current therapies, including intrapleural fibrinolytic or enzymatic therapy (IPFT/IET), have limitations in efficacy and safety. Identifying new therapeutic targets is crucial for improving treatment outcomes. Research is needed to understand the role of profibrogenic factors in pleural neoplasia, their regulation, and their impact on different stages of pleural organization. The development of a rabbit model of organizing MPE could provide insights into underlying mechanisms and novel interventions. Comparative studies of pleural tissues and effusions from MPE patients and other forms of pleural organization may reveal valuable information. Cellular and molecular profiling, assessment of biomarkers, and personalized IPFT dosing are potential areas of investigation. Suppression of PAI-1 activity and the role of hyaluronic acid in malignant mesothelioma are also important research directions. Understanding the profibrogenic capacity of pleural mesothelial cells undergoing mesenchymal transition (MesoMT) and identifying key contributors and effectors involved in this process are essential for developing effective treatments for loculated MPE.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141120
Coad Thomas Dow, Liam Obaid
{"title":"Proposing Bromo-Epi-Androsterone (BEA) for Post-Traumatic Stress Disorder (PTSD).","authors":"Coad Thomas Dow, Liam Obaid","doi":"10.3390/cells14141120","DOIUrl":"https://doi.org/10.3390/cells14141120","url":null,"abstract":"<p><p>Post-traumatic stress disorder (PTSD) has traditionally been viewed as a psychiatric disorder of fear, memory, and emotional regulation. However, growing evidence implicates systemic and neuroinflammation as key contributors. Individuals with PTSD often exhibit elevated blood levels of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and C-reactive protein, indicating immune dysregulation. Dysfunctions in the hypothalamic-pituitary-adrenal (HPA) axis marked by reduced cortisol levels impair the body's ability to regulate inflammation, allowing persistent immune activation. Circulating cytokines cross a weakened blood-brain barrier and activate microglia, which release additional inflammatory mediators. This neuroinflammatory loop can damage brain circuits critical to emotion processing including the hippocampus, amygdala, and prefrontal cortex, and disrupt neurotransmitter systems like serotonin and glutamate, potentially explaining PTSD symptoms such as hyperarousal and persistent fear memories. Rodent models of PTSD show similar inflammatory profiles, reinforcing the role of neuroinflammation in disease pathology. Bromo-epi-androsterone (BEA), a synthetic analog of dehydroepiandrosterone (DHEA), has shown potent anti-inflammatory effects in clinical trials, significantly reducing IL-1β, IL-6, and TNF-α. By modulating immune activity, BEA represents a promising candidate for mitigating neuroinflammation and its downstream effects in PTSD. These findings support the rationale for initiating clinical trials of BEA as a novel therapeutic intervention for PTSD.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141122
Adele Chimento, Arianna De Luca, Massimo Venditti, Francesca De Amicis, Vincenzo Pezzi
{"title":"Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties.","authors":"Adele Chimento, Arianna De Luca, Massimo Venditti, Francesca De Amicis, Vincenzo Pezzi","doi":"10.3390/cells14141122","DOIUrl":"https://doi.org/10.3390/cells14141122","url":null,"abstract":"<p><p>Male infertility is a pathological condition that affects many subjects and for which a progressive increase in cases has been observed in recent years. The mechanisms underlying male reproductive system dysfunction are not fully understood and the specific drugs use has not produced optimal results. Therefore, the focus on developing new therapeutic options to prevent or treat this dysfunction is continuously growing. Defective sperm function has been associated with oxidative stress (OS) due to reactive oxygen species (ROS) excessive production. OS is related to mitochondrial dysfunction, lipid peroxidation, DNA damage and fragmentation, and ultimately sperm cell death. Many defense mechanisms to protect from ROS injuries have been developed; natural antioxidants, such as vitamin C and E are able to interact with oxidizing radicals, neutralizing them. Interestingly, resveratrol (RSV), a natural polyphenol with proven health-promoting actions, has been found to be an effective free radical scavenger in several in vitro and in vivo models, providing protection against OS. In this review, we discussed mechanisms related to the modulation of redox homeostasis in the testis and how the alteration of these processes can determine a damage in testicular function; particularly, we focused on the antioxidant properties of RSV that could give beneficial effects in preserving male fertility.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141123
David Brownell, Laurence Carignan, Reza Alavi, Christophe Caneparo, Maxime Labroy, Todd Galbraith, Stéphane Chabaud, François Berthod, Laure Gibot, François Bordeleau, Stéphane Bolduc
{"title":"Impact of the Use of 2-Phospho-L Ascorbic Acid in the Production of Engineered Stromal Tissue for Regenerative Medicine.","authors":"David Brownell, Laurence Carignan, Reza Alavi, Christophe Caneparo, Maxime Labroy, Todd Galbraith, Stéphane Chabaud, François Berthod, Laure Gibot, François Bordeleau, Stéphane Bolduc","doi":"10.3390/cells14141123","DOIUrl":"https://doi.org/10.3390/cells14141123","url":null,"abstract":"<p><p>Tissue engineering enables autologous reconstruction of human tissues, addressing limitations in tissue availability and immune compatibility. Several tissue engineering techniques, such as self-assembly, rely on or benefit from extracellular matrix (ECM) secretion by fibroblasts to produce biomimetic scaffolds. Models have been developed for use in humans, such as skin and corneas. Ascorbic acid (vitamin C, AA) is essential for collagen biosynthesis. However, AA is chemically unstable in culture, with a half-life of 24 h, requiring freshly prepared AA with each change of medium. This study aims to demonstrate the functional equivalence of 2-phospho-L-ascorbate (2PAA), a stable form of AA, for tissue reconstruction. Dermal, vaginal, and bladder stroma were reconstructed by self-assembly using tissue-specific protocols. The tissues were cultured in a medium supplemented with either freshly prepared or frozen AA, or with 2PAA. Biochemical analyses were performed on the tissues to evaluate cell density and tissue composition, including collagen secretion and deposition. Histology and quantitative polarized light microscopy were used to evaluate tissue architecture, and mechanical evaluation was performed both by tensiometry and atomic force microscopy (AFM) to evaluate its macroscopic and cell-scale mechanical properties. The tissues produced by the three ascorbate conditions had similar collagen deposition, architecture, and mechanical properties in each organ-specific stroma. Mechanical characterization revealed tissue-specific differences, with tensile modulus values ranging from 1-5 MPa and AFM-derived apparent stiffness in the 1-2 kPa range, reflecting the nonlinear and scale-dependent behavior of the engineered stroma. The results demonstrate the possibility of substituting AA with 2PAA for tissue engineering. This protocol could significantly reduce the costs associated with tissue production by reducing preparation time and use of materials. This is a crucial factor for any scale-up activity.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141124
Arveen Shokravi, Yuchen Luo, Simon W Rabkin
{"title":"Cellular and Molecular Mechanisms Explaining the Link Between Inflammatory Bowel Disease and Heart Failure.","authors":"Arveen Shokravi, Yuchen Luo, Simon W Rabkin","doi":"10.3390/cells14141124","DOIUrl":"https://doi.org/10.3390/cells14141124","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is increasingly recognized as a systemic condition with cardiovascular implications. Among these, heart failure has emerged as a significant complication. The aim of this narrative review was to explore the cellular and molecular pathways that link IBD and heart failure. Drawing upon findings from epidemiologic studies, experimental models, and clinical research, we examined the pathways through which IBD may promote cardiac dysfunction. Chronic systemic inflammation in IBD, driven by cytokines such as TNF-α and IL-1β, can impair myocardial structure and function. Furthermore, intestinal barrier dysfunction and gut dysbiosis can facilitate the translocation of proinflammatory microbial metabolites, including lipopolysaccharide and phenylacetylglutamine, and deplete cardioprotective metabolites like short-chain fatty acids, thereby exacerbating heart failure risk. Additional contributing factors include endothelial and microvascular dysfunction, autonomic dysregulation, nutritional deficiencies, shared genetic susceptibility, and adverse pharmacologic effects. IBD contributes to heart failure pathogenesis through multifactorial and interrelated mechanisms. Recognizing the role of the gut-heart axis in IBD is crucial for the early identification of cardiovascular risk, providing guidance for integrating care and developing targeted therapies to reduce the risk of heart failure in this vulnerable population.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141121
Tamás Gáll, Dávid Pethő, Annamária Nagy, Szilárd Póliska, György Balla, József Balla
{"title":"Prolyl Hydroxylase Inhibitor-Mediated HIF Activation Drives Transcriptional Reprogramming in Retinal Pigment Epithelium: Relevance to Chronic Kidney Disease.","authors":"Tamás Gáll, Dávid Pethő, Annamária Nagy, Szilárd Póliska, György Balla, József Balla","doi":"10.3390/cells14141121","DOIUrl":"https://doi.org/10.3390/cells14141121","url":null,"abstract":"<p><p>Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved in eye diseases, this study examined the effects of HIF-PHIs on metabolism and gene expression in retinal pigment epithelium (RPE) cells. Results revealed that PHIs differentially induced angiogenic (VEGFA, ANG) and glycolytic (PDK1, GLUT1) gene expression, with Roxadustat causing the strongest transcriptional changes. However, Roxadustat-induced angiogenic signals did not promote endothelial tube formation. Moreover, it did not induce oxidative stress, inflammation, or significant antioxidant gene responses in ARPE-19 cells. Roxadustat also reduced the inflammatory cytokine response to tumor necrosis factor-α, including IL-6, IL-8, and MCP-1, and did not exacerbate VEGF expression under high-glucose conditions. Overall, Roxadustat triggered complex gene expression changes without promoting inflammation or oxidative stress in RPE cells. Despite these findings, ophthalmologic monitoring is advised during PHI treatment in CKD patients receiving HIF-PHIs.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141117
Marwan Amara, Ohad Stoler, Edo Y Birati
{"title":"The Role of Inflammation in the Pathophysiology of Heart Failure.","authors":"Marwan Amara, Ohad Stoler, Edo Y Birati","doi":"10.3390/cells14141117","DOIUrl":"https://doi.org/10.3390/cells14141117","url":null,"abstract":"<p><p>Heart failure (HF), a prevalent global health issue characterized by the heart's impaired ability to pump or fill blood, affects millions worldwide and continues to pose significant challenges despite advancements in treatment. This review delves into the critical and increasingly recognized role of inflammation in the development and progression of this complex syndrome. While the incidence of HF has seen a decline in some regions due to improved cardiac care, its overall prevalence is rising, particularly among younger adults and those with heart failure with a preserved ejection fraction (HFpEF). Given the persistently high rates of hospitalization and mortality associated with HF, understanding the underlying mechanisms, including the contribution of inflammation, is crucial for identifying novel therapeutic strategies. Inflammation in heart failure is a multifaceted process involving the activation of the immune system, both innate and adaptive, and encompasses various mechanisms such as the release of pro-inflammatory mediators, endothelial dysfunction, and neurohormonal activation. Myocardial damage triggers the innate immune response, while humoral immunity and chronic systemic inflammation, often linked to cardiovascular risk factors and autoimmune diseases, also play significant roles. Notably, heart failure and inflammation have a reciprocal relationship, with HF itself contributing to inflammatory processes within the cardiac tissue and systemically. Understanding these intricate pathways, including the involvement of specific immune cells and molecular mediators, is essential for comprehending the pathogenesis of heart failure and exploring potential therapeutic interventions. The review further examines various inflammatory biomarkers that have been implicated in heart failure, such as cytokines (including TNF-α and IL-1) and C-reactive protein (CRP). While these markers often correlate with the severity and prognosis of HF, clinical trials targeting specific inflammatory mediators have largely yielded disappointing results, highlighting the complexity of the inflammatory response in this context. The exploration of these biomarkers and the challenges encountered in translating anti-inflammatory strategies into effective treatments underscore the need for continued research to unravel the precise role of inflammation across different HF subtypes and to develop more targeted and effective anti-inflammatory therapies.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-21DOI: 10.3390/cells14141119
Florian Kleefeldt, Peter Michelbach, Uwe Rueckschloss, Süleyman Ergün, Nicole Wagner
{"title":"Three-Dimensional Visualization of the Cardiac Stroma.","authors":"Florian Kleefeldt, Peter Michelbach, Uwe Rueckschloss, Süleyman Ergün, Nicole Wagner","doi":"10.3390/cells14141119","DOIUrl":"https://doi.org/10.3390/cells14141119","url":null,"abstract":"<p><p>Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial components of the cardiac stroma is the myocardial vasculature. To enhance the spatial visualization of the cardiac stromal cytoarchitecture with a particular focus on myocardial vasculature, we performed 3D reconstructions of the murine cardiac micro vessels using Serial Block-Face Scanning Electron Microscopy (SBF-SEM). These analyses revealed that pericyte cell bodies were primarily oriented lengthwise and extended several cellular protrusions towards the endothelium. At capillary branching points, some pericytes made contact with both capillaries emerging from branching. In addition to pericytes that are completely encapsulated by the common basal lamina together with capillary endothelial cells, we identified other vascular-associated cells located outside this sheath. Based on marker expression, these cells were distinguished from fibroblasts and suggested to be telocytes. The vascular-associated cells formed electron-dense contact zones with endothelial cells, suggesting functional coupling between these both cell types. In conclusion, this study provides detailed three-dimensional visualizations of the cardiac stroma with a particular focus on cardiac microvasculature, offering enhanced insight into the cardiac stromal cytoarchitecture.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CellsPub Date : 2025-07-20DOI: 10.3390/cells14141115
Aya Osama, Ahmed Karam, Abdelrahman Atef, Menna Arafat, Rahma W Afifi, Maha Mokhtar, Taghreed Khaled Abdelmoneim, Asmaa Ramzy, Enas El Nadi, Asmaa Salama, Emad Elzayat, Sameh Magdeldin
{"title":"Integrative Multi-Omics Profiling of Rhabdomyosarcoma Subtypes Reveals Distinct Molecular Pathways and Biomarker Signatures.","authors":"Aya Osama, Ahmed Karam, Abdelrahman Atef, Menna Arafat, Rahma W Afifi, Maha Mokhtar, Taghreed Khaled Abdelmoneim, Asmaa Ramzy, Enas El Nadi, Asmaa Salama, Emad Elzayat, Sameh Magdeldin","doi":"10.3390/cells14141115","DOIUrl":"https://doi.org/10.3390/cells14141115","url":null,"abstract":"<p><p>Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, comprises embryonal (ERMS) and alveolar (ARMS) subtypes with distinct histopathological features, clinical outcomes, and therapeutic responses. To better characterize their molecular distinctions, we performed untargeted plasma proteomics and metabolomics profiling in children with ERMS (<i>n</i> = 18), ARMS (<i>n</i> = 17), and matched healthy controls (<i>n</i> = 18). Differential expression, functional enrichment (GO, KEGG, RaMP-DB), co-expression network analysis (WGCNA/WMCNA), and multi-omics integration (DIABLO, MOFA) revealed distinct molecular signatures for each subtype. ARMS displayed elevated oncogenic and stemness-associated proteins (e.g., cyclin E1, FAP, myotrophin) and metabolites involved in lipid transport, fatty acid metabolism, and polyamine biosynthesis. In contrast, ERMS was enriched in immune-related and myogenic proteins (e.g., myosin-9, SAA2, S100A11) and metabolites linked to glutamate/glycine metabolism and redox homeostasis. Pathway analyses highlighted subtype-specific activation of PI3K-Akt and Hippo signaling in ARMS and immune and coagulation pathways in ERMS. Additionally, the proteomics and metabolomics datasets showed association with clinical parameters, including disease stage, lymph node involvement, and age, demonstrating clear molecular discrimination consistent with clinical observation. Co-expression networks and integrative analyses further reinforced these distinctions, uncovering coordinated protein-metabolite modules. Our findings reveal novel, subtype-specific molecular programs in RMS and propose candidate biomarkers and pathways that may guide precision diagnostics and therapeutic targeting in pediatric sarcomas.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144706493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}