心脏间质三维可视化。

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-07-21 DOI:10.3390/cells14141119
Florian Kleefeldt, Peter Michelbach, Uwe Rueckschloss, Süleyman Ergün, Nicole Wagner
{"title":"心脏间质三维可视化。","authors":"Florian Kleefeldt, Peter Michelbach, Uwe Rueckschloss, Süleyman Ergün, Nicole Wagner","doi":"10.3390/cells14141119","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial components of the cardiac stroma is the myocardial vasculature. To enhance the spatial visualization of the cardiac stromal cytoarchitecture with a particular focus on myocardial vasculature, we performed 3D reconstructions of the murine cardiac micro vessels using Serial Block-Face Scanning Electron Microscopy (SBF-SEM). These analyses revealed that pericyte cell bodies were primarily oriented lengthwise and extended several cellular protrusions towards the endothelium. At capillary branching points, some pericytes made contact with both capillaries emerging from branching. In addition to pericytes that are completely encapsulated by the common basal lamina together with capillary endothelial cells, we identified other vascular-associated cells located outside this sheath. Based on marker expression, these cells were distinguished from fibroblasts and suggested to be telocytes. The vascular-associated cells formed electron-dense contact zones with endothelial cells, suggesting functional coupling between these both cell types. In conclusion, this study provides detailed three-dimensional visualizations of the cardiac stroma with a particular focus on cardiac microvasculature, offering enhanced insight into the cardiac stromal cytoarchitecture.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 14","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Visualization of the Cardiac Stroma.\",\"authors\":\"Florian Kleefeldt, Peter Michelbach, Uwe Rueckschloss, Süleyman Ergün, Nicole Wagner\",\"doi\":\"10.3390/cells14141119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial components of the cardiac stroma is the myocardial vasculature. To enhance the spatial visualization of the cardiac stromal cytoarchitecture with a particular focus on myocardial vasculature, we performed 3D reconstructions of the murine cardiac micro vessels using Serial Block-Face Scanning Electron Microscopy (SBF-SEM). These analyses revealed that pericyte cell bodies were primarily oriented lengthwise and extended several cellular protrusions towards the endothelium. At capillary branching points, some pericytes made contact with both capillaries emerging from branching. In addition to pericytes that are completely encapsulated by the common basal lamina together with capillary endothelial cells, we identified other vascular-associated cells located outside this sheath. Based on marker expression, these cells were distinguished from fibroblasts and suggested to be telocytes. The vascular-associated cells formed electron-dense contact zones with endothelial cells, suggesting functional coupling between these both cell types. In conclusion, this study provides detailed three-dimensional visualizations of the cardiac stroma with a particular focus on cardiac microvasculature, offering enhanced insight into the cardiac stromal cytoarchitecture.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 14\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14141119\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14141119","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心脏组织工程是恢复心力衰竭患者心功能的一种很有前途的策略。了解包括心脏基质在内的心脏组织结构不仅对发展先进的心脏组织工程,而且对开发新的治疗策略至关重要。心肌间质的重要组成部分之一是心肌血管。为了增强心肌间质细胞结构的空间可视化,特别是心肌血管,我们使用连续块面扫描电子显微镜(SBF-SEM)对小鼠心脏微血管进行了三维重建。这些分析表明,周细胞细胞体主要纵向取向,并向内皮延伸出几个细胞突起。在毛细血管分支点,一些周细胞与从分支出来的两条毛细血管接触。除了周细胞与毛细血管内皮细胞完全被共同基底膜包裹外,我们还发现了位于该鞘外的其他血管相关细胞。根据标记表达,这些细胞与成纤维细胞区分开来,提示是远端细胞。血管相关细胞与内皮细胞形成了电子密集的接触区,表明这两种细胞类型之间存在功能偶联。总之,这项研究提供了详细的心脏间质三维可视化,特别关注心脏微血管,为心脏间质细胞结构提供了更好的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Visualization of the Cardiac Stroma.

Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial components of the cardiac stroma is the myocardial vasculature. To enhance the spatial visualization of the cardiac stromal cytoarchitecture with a particular focus on myocardial vasculature, we performed 3D reconstructions of the murine cardiac micro vessels using Serial Block-Face Scanning Electron Microscopy (SBF-SEM). These analyses revealed that pericyte cell bodies were primarily oriented lengthwise and extended several cellular protrusions towards the endothelium. At capillary branching points, some pericytes made contact with both capillaries emerging from branching. In addition to pericytes that are completely encapsulated by the common basal lamina together with capillary endothelial cells, we identified other vascular-associated cells located outside this sheath. Based on marker expression, these cells were distinguished from fibroblasts and suggested to be telocytes. The vascular-associated cells formed electron-dense contact zones with endothelial cells, suggesting functional coupling between these both cell types. In conclusion, this study provides detailed three-dimensional visualizations of the cardiac stroma with a particular focus on cardiac microvasculature, offering enhanced insight into the cardiac stromal cytoarchitecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信