Ceramist最新文献

筛选
英文 中文
Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs 纳米晶体、支撑材料和混合体系对dmfc催化剂结构和形状的控制
Ceramist Pub Date : 2019-06-30 DOI: 10.31613/CERAMIST.2019.22.2.07
Young Wook Lee, T. Shin
{"title":"Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs","authors":"Young Wook Lee, T. Shin","doi":"10.31613/CERAMIST.2019.22.2.07","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.2.07","url":null,"abstract":"s Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of biand tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75682307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells 高效串联太阳能电池用有机-无机钙钛矿
Ceramist Pub Date : 2019-06-30 DOI: 10.31613/CERAMIST.2019.22.2.05
I. Park, Dong Hoe Kim
{"title":"Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells","authors":"I. Park, Dong Hoe Kim","doi":"10.31613/CERAMIST.2019.22.2.05","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.2.05","url":null,"abstract":"s To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature processpossibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrowand wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wideand narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in allperovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78862787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spark Plasma Sintering Technique and Application for All-Solid-State Batteries 放电等离子烧结技术及其在全固态电池中的应用
Ceramist Pub Date : 2019-06-30 DOI: 10.31613/CERAMIST.2019.22.2.08
Seokhee Lee
{"title":"Spark Plasma Sintering Technique and Application for All-Solid-State Batteries","authors":"Seokhee Lee","doi":"10.31613/CERAMIST.2019.22.2.08","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.2.08","url":null,"abstract":"s All-solid-state batteries have received increasing attention because of their high safety aspect and high energy and power densities. However, the inferior solid-solid interfaces between solid electrolyte and active materials in electrode, which cause high interfacial resistance, reduce ion and electron transfer rate and limit battery performance. Recently, spark plasma sintering is emerging as a promising technique for fabricating solid electrolytes and composite-electrodes. Herein, this paper focuses on the overview of spark plasma sintering to fabricate solid electrolytes and composite-electrodes for all-solid-state batteries. In the end, future opportunities and challenges associated with SPS technique for all-solid-state batteries are described.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77996418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Current Status of Nanostructured Thermoelectric Materials for Mid-High Temperature Applications 中高温应用纳米结构热电材料的现状
Ceramist Pub Date : 2019-06-30 DOI: 10.31613/CERAMIST.2019.22.2.04
W. Nam, W. Shin, J. Cho, W. Seo
{"title":"Current Status of Nanostructured Thermoelectric Materials for Mid-High Temperature Applications","authors":"W. Nam, W. Shin, J. Cho, W. Seo","doi":"10.31613/CERAMIST.2019.22.2.04","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.2.04","url":null,"abstract":"s Thermoelectric energy conversion has attracted much attention because it can convert heat into electric power directly through solid state device and vice versa. Current research is aimed at increasing the thermoelectric figure of merit (ZT ) by improving the power factor and reducing the thermal conductivity. Although there have been significant progresses in increasing ZT of material systems composed of Bi, Te, Ge, Pb, and etc. over the last few decades, their relatively high cost, toxicity, and the scarcity have hindered further development of thermoelectrics to expand practical applications. In this paper, we review the current status of research in the fields of nanostructured thermoelectric materials with eco-friendly and low cost elements, such as skutterudites and oxides, for mid-high temperature applications, highlighting the strategies to improve thermoelectric performance.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83278391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Research Progresses in 2D Nanomaterial-based Photodetectors 二维纳米材料光电探测器的研究进展
Ceramist Pub Date : 2019-03-31 DOI: 10.31613/CERAMIST.2019.22.1.04
Hye Yeon Jang, J. Nam, B. Cho
{"title":"Recent Research Progresses in 2D Nanomaterial-based Photodetectors","authors":"Hye Yeon Jang, J. Nam, B. Cho","doi":"10.31613/CERAMIST.2019.22.1.04","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.1.04","url":null,"abstract":"*공동 제1저자 (*Co-first author) Abstacts Atomically thin two-dimensional (2D) nanomaterials, including transition metal dichalcogenides (TMDs), graphene, boron nitride, and black phosphorus, have opened up new opportunities for the next generation optoelectronics owing to their unique properties such as high absorbance coefficient, high carrier mobility, tunable band gap, strong light-matter interaction, and flexibility. In this review, photodetectors based on 2D nanomaterials are classified with respect to critical element technology (e.g., active channel, contact, interface, and passivation). We discuss key ideas for improving the performance of the 2D photodetectors. In addition, figure-of-merits (responsivity, detectivity, response speed, and wavelength spectrum range) are compared to evaluate the performance of diverse 2D photodetectors. In order to achieve highly reliable 2D photodetectors, in-depth studies on material synthesis, device structure, and integration process are still essential. We hope that this review article is able to render the inspiration for the breakthrough of the 2D photodetector research field.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75759670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piezoelectric Thin Films for Microtransducer 微换能器用压电薄膜
Ceramist Pub Date : 2019-03-31 DOI: 10.31613/CERAMIST.2019.22.1.07
Soonjae Jung, S. Baek
{"title":"Piezoelectric Thin Films for Microtransducer","authors":"Soonjae Jung, S. Baek","doi":"10.31613/CERAMIST.2019.22.1.07","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.1.07","url":null,"abstract":"s Piezoelectric materials can directly convert mechanical energy to electrical one, and vice versa. Research on piezoelectric materials and devices has a long history, and now many relevant products are available in a wide range of applications such as medical, military, industrial, home appliance, and mobile electronics. One of the major research trends now is not only to further improve the physical properties of the piezoelectric materials, but also to reduce the size of the piezoelectric devices. This review focuses on the development of piezoelectric thin films that can enhance the performance of microtransducers.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86547764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle based Wearable Sensor 基于纳米颗粒的可穿戴传感器
Ceramist Pub Date : 2019-03-31 DOI: 10.31613/CERAMIST.2019.22.1.01
Ho Kun Woo, Junhyuk Ahn, S. Oh
{"title":"Nanoparticle based Wearable Sensor","authors":"Ho Kun Woo, Junhyuk Ahn, S. Oh","doi":"10.31613/CERAMIST.2019.22.1.01","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.1.01","url":null,"abstract":"s Recently, wearable sensors have received considerable attention in a variety of research fields and industries as the importance of wearable healthcare systems, soft robotics and bio-integrated devices increased. However, expensive and complex processes are hindering the commercialization of wearable sensors. Nanoparticle presents some of solutions to these problems as its adjustable for processability and tunable properties. In this paper, the recent development of nanoparticle based pressure and strain sensors was reviewed, and a discussion on their strategies to overcome the conventional limitation and operating principles is presented.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73884813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra Violet (UV) Sensor based on Oxide Ceramic Materials 基于氧化物陶瓷材料的紫外传感器
Ceramist Pub Date : 2019-03-31 DOI: 10.31613/CERAMIST.2019.22.1.03
Hak Ki Yu
{"title":"Ultra Violet (UV) Sensor based on Oxide Ceramic Materials","authors":"Hak Ki Yu","doi":"10.31613/CERAMIST.2019.22.1.03","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.1.03","url":null,"abstract":"","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79143106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sensing performances of Semiconducting Carbon Nanomaterials based Gas Sensors Operating at Room Temperature 室温下基于半导体碳纳米材料的气体传感器的传感性能
Ceramist Pub Date : 2019-03-31 DOI: 10.31613/CERAMIST.2019.22.1.08
Sun-Woo Choi
{"title":"Sensing performances of Semiconducting Carbon Nanomaterials based Gas Sensors Operating at Room Temperature","authors":"Sun-Woo Choi","doi":"10.31613/CERAMIST.2019.22.1.08","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.1.08","url":null,"abstract":"s Semiconducting carbon-based nanomaterials including single-walled carbon nanotubes(SWCNTs), multi-walled CNT(MWCNTs), graphene(GR), graphene oxide(GO), and reduced graphene oxide(RGO), are very promising sensing materials due to their large surface area, high conductivity, and ability to operate at room temperature. Despite of these advantages, the semiconducting carbon-based nanomaterials intrinsically possess crucial disadvantages compared with semiconducting metal oxide nanomaterials, such as relatively low gas response, irreversible recovery, and poor selectivity. Therefore, in this paper, we introduce a variety of strategies to overcome these disadvantages and investigate principle parameters to improve gas sensing performances.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76891151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Developments in Metal Oxide Gas Sensors for Breath Analysis 用于呼吸分析的金属氧化物气体传感器的最新进展
Ceramist Pub Date : 2019-03-31 DOI: 10.31613/CERAMIST.2019.22.1.06
Ji-Wook Yoon, J. -. Lee
{"title":"Recent Developments in Metal Oxide Gas Sensors for Breath Analysis","authors":"Ji-Wook Yoon, J. -. Lee","doi":"10.31613/CERAMIST.2019.22.1.06","DOIUrl":"https://doi.org/10.31613/CERAMIST.2019.22.1.06","url":null,"abstract":"s Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76686359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信