用于呼吸分析的金属氧化物气体传感器的最新进展

Ji-Wook Yoon, J. -. Lee
{"title":"用于呼吸分析的金属氧化物气体传感器的最新进展","authors":"Ji-Wook Yoon, J. -. Lee","doi":"10.31613/CERAMIST.2019.22.1.06","DOIUrl":null,"url":null,"abstract":"s Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent Developments in Metal Oxide Gas Sensors for Breath Analysis\",\"authors\":\"Ji-Wook Yoon, J. -. Lee\",\"doi\":\"10.31613/CERAMIST.2019.22.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"s Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.\",\"PeriodicalId\":9738,\"journal\":{\"name\":\"Ceramist\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31613/CERAMIST.2019.22.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/CERAMIST.2019.22.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

呼吸分析作为一种非侵入性疾病识别和诊断方法正在迅速发展。在不久的将来,金属氧化物气体传感器是实现便携式手持呼吸分析设备的最理想平台之一。本文综述了金属氧化物气体传感器在检测呼出的生物标记气体(如一氧化氮、丙酮、氨、硫化氢和碳氢化合物)方面的最新进展。重点放在定制传感材料/薄膜的策略上,这些材料/薄膜能够高度选择性和敏感地检测生物标志物气体,而对乙醇(主要的干扰呼吸气体)的交叉响应可以忽略不计。通过具体实例验证了该策略的有效性,包括温度传感优化、添加剂掺杂优化、酸碱相互作用优化、催化剂负载优化、气体重整反应控制优化等。此外,我们还简要讨论了实现多种疾病同时评估的气体传感器阵列的设计和优化方法。使用高性能金属氧化物气体传感器/阵列的呼吸分析将为哮喘、糖尿病、肾功能障碍、口臭和肺癌等疾病的即时诊断开辟新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Developments in Metal Oxide Gas Sensors for Breath Analysis
s Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信