Cellular and molecular bioengineering最新文献

筛选
英文 中文
Contact Guidance Drives Upward Cellular Migration at the Mesoscopic Scale. 接触引导在介观尺度上推动细胞向上迁移。
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-05-01 eCollection Date: 2023-06-01 DOI: 10.1007/s12195-023-00766-y
Xiaoxiao Chen, Youjun Xia, Wenqiang Du, Han Liu, Ran Hou, Yiyu Song, Wenhu Xu, Yuxin Mao, Jianfeng Chen
{"title":"Contact Guidance Drives Upward Cellular Migration at the Mesoscopic Scale.","authors":"Xiaoxiao Chen, Youjun Xia, Wenqiang Du, Han Liu, Ran Hou, Yiyu Song, Wenhu Xu, Yuxin Mao, Jianfeng Chen","doi":"10.1007/s12195-023-00766-y","DOIUrl":"10.1007/s12195-023-00766-y","url":null,"abstract":"<p><strong>Introduction: </strong>Cancer metastasis is associated with increased cancer incidence, recurrence, and mortality. The role of cell contact guidance behaviors in cancer metastasis has been recognized but has not been elucidated yet.</p><p><strong>Methods: </strong>The contact guidance behavior of cancer cells in response to topographical constraints is identified using microgrooved substrates with varying dimensions at the mesoscopic scale. Then, the cell morphology is determined to quantitatively analyze the effects of substrate dimensions on cells contact guidance. Cell density and migrate velocity signatures within the cellular population are determined using time-lapse phase-contrast microscopy. The effect of soluble factors concentration is determined by culturing cells upside down. Then, the effect of cell-substrate interaction on cell migration is investigated using traction force microscopy.</p><p><strong>Results: </strong>With increasing depth and decreasing groove width, cell elongation and alignment are enhanced, while cell spreading is inhibited. Moreover, cells display preferential distribution on the ridges, which is found to be more pronounced with increasing depth and groove width. Determinations of cell density and migration velocity signatures reveal that the preferential distribution on ridges is caused by cell upward migration. Combined with traction force measurement, we find that migration toward ridges is governed by different cell-substrate interactions between grooves and ridges caused by geometrical constraints. Interestingly, the upward migration of cells at the mesoscopic scale is driven by entropic maximization.</p><p><strong>Conclusions: </strong>The mesoscopic cell contact guidance mechanism based on the entropic force driven theory provides basic support for the study of cell alignment and migration along healthy tissues with varying size, thereby aiding in the prediction of cancer metastasis.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00766-y.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 3","pages":"205-218"},"PeriodicalIF":2.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Place for Large Language Models in Scientific Publishing, Apart from Credited Authorship. 除署名作者外,大语言模型在科学出版中的地位。
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-04-13 eCollection Date: 2023-04-01 DOI: 10.1007/s12195-023-00765-z
Michael R King
{"title":"A Place for Large Language Models in Scientific Publishing, Apart from Credited Authorship.","authors":"Michael R King","doi":"10.1007/s12195-023-00765-z","DOIUrl":"10.1007/s12195-023-00765-z","url":null,"abstract":"","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 2","pages":"95-98"},"PeriodicalIF":2.8,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Angiotensin II Increases Oxidative Stress and Inflammation in Female, But Not Male, Endothelial Cells. 血管紧张素 II 会增加雌性内皮细胞的氧化应激和炎症反应,但不会增加雄性内皮细胞的氧化应激和炎症反应。
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-04-12 eCollection Date: 2023-04-01 DOI: 10.1007/s12195-023-00762-2
Callie M Weber, Mikayla N Harris, Sophia M Zic, Gurneet S Sangha, Nicole S Arnold, Douglas F Dluzen, Alisa Morss Clyne
{"title":"Angiotensin II Increases Oxidative Stress and Inflammation in Female, But Not Male, Endothelial Cells.","authors":"Callie M Weber, Mikayla N Harris, Sophia M Zic, Gurneet S Sangha, Nicole S Arnold, Douglas F Dluzen, Alisa Morss Clyne","doi":"10.1007/s12195-023-00762-2","DOIUrl":"10.1007/s12195-023-00762-2","url":null,"abstract":"<p><strong>Introduction: </strong>Women are at elevated risk for certain cardiovascular diseases, including pulmonary arterial hypertension, Alzheimer's disease, and vascular complications of diabetes. Angiotensin II (AngII), a circulating stress hormone, is elevated in cardiovascular disease; however, our knowledge of sex differences in the vascular effects of AngII are limited. We therefore analyzed sex differences in human endothelial cell response to AngII treatment.</p><p><strong>Methods: </strong>Male and female endothelial cells were treated with AngII for 24 h and analyzed by RNA sequencing. We then used endothelial and mesenchymal markers, inflammation assays, and oxidative stress indicators to measure female and male endothelial cell functional changes in response to AngII.</p><p><strong>Results: </strong>Our data show that female and male endothelial cells are transcriptomically distinct. Female endothelial cells treated with AngII had widespread gene expression changes related to inflammatory and oxidative stress pathways, while male endothelial cells had few gene expression changes. While both female and male endothelial cells maintained their endothelial phenotype with AngII treatment, female endothelial cells showed increased release of the inflammatory cytokine interleukin-6 and increased white blood cell adhesion following AngII treatment concurrent with a second inflammatory cytokine. Additionally, female endothelial cells had elevated reactive oxygen species production compared to male endothelial cells after AngII treatment, which may be partially due to nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) escape from X-chromosome inactivation.</p><p><strong>Conclusions: </strong>These data suggest that endothelial cells have sexually dimorphic responses to AngII, which could contribute to increased prevalence of some cardiovascular diseases in women.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00762-2.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 2","pages":"127-141"},"PeriodicalIF":2.8,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caveolin Delivered by Ultrasound-Mediated Microbubble Destruction Prevents Endothelial Cell Proliferation. 通过超声介导的微气泡破坏递送的Caveolin阻止内皮细胞增殖。
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-04-12 eCollection Date: 2023-06-01 DOI: 10.1007/s12195-023-00763-1
Iván M López-Rodulfo, Elisa Villa-Martínez, Amelia Rios, Bruno Escalante
{"title":"Caveolin Delivered by Ultrasound-Mediated Microbubble Destruction Prevents Endothelial Cell Proliferation.","authors":"Iván M López-Rodulfo, Elisa Villa-Martínez, Amelia Rios, Bruno Escalante","doi":"10.1007/s12195-023-00763-1","DOIUrl":"10.1007/s12195-023-00763-1","url":null,"abstract":"<p><strong>Introduction: </strong>The nitric oxide synthase (eNOS) is an important regulator of vascular homeostasis. eNOS is modulated by intracellular mechanisms that include protein-protein interaction with Caveolin-1 (Cav). Cav binds to and impairs eNOS activation reducing vascular permeability and angiogenesis. Blocking of eNOS by Cav has been proposed as therapeutic antiangiogenic approach. However, the efficient and controlled delivery of the peptide requires to be solved.</p><p><strong>Methods: </strong>The effect of antennapedia (AP)-Cav loaded into microbubbles (MBs) and delivered by ultrasound-mediated microbubble destruction (UMMD) into brain endothelial cells (bEnd.3 cells) was evaluated on NO production using DAF2-DA, cell migration assessed by the wound healing assay, cell proliferation with BrdU, and ex-vivo angiogenesis in rat aortic rings.</p><p><strong>Results: </strong>An enhanced inhibitory effect of AP-Cav was observed on cells treated with UMMD. MBs and ultrasound disruption delivery of AP-Cav increased acetylcholine-induced NO release, wound healing, cell proliferation, and angiogenesis inhibition on bEnd.3 cells, compared to free AP-Cav administration.</p><p><strong>Conclusion: </strong>We demonstrated that the delivery of Cav via AP-Cav-loaded MBs and UMMD may be an administration method for Cav that would increase its therapeutic potential by enhancing efficacy and cellular specificity.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 3","pages":"219-229"},"PeriodicalIF":2.8,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9823085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TNF-α Preconditioning Promotes a Proangiogenic Phenotype in hiPSC-Derived Vascular Smooth Muscle Cells. TNF-α预处理促进hiPSC衍生的血管平滑肌细胞的促血管生成表型。
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-04-08 eCollection Date: 2023-06-01 DOI: 10.1007/s12195-023-00764-0
Daniel C Sasson, Sara Islam, Kaiti Duan, Biraja C Dash, Henry C Hsia
{"title":"TNF-α Preconditioning Promotes a Proangiogenic Phenotype in hiPSC-Derived Vascular Smooth Muscle Cells.","authors":"Daniel C Sasson, Sara Islam, Kaiti Duan, Biraja C Dash, Henry C Hsia","doi":"10.1007/s12195-023-00764-0","DOIUrl":"10.1007/s12195-023-00764-0","url":null,"abstract":"<p><strong>Introduction: </strong>hiPSC-VSMCs have been suggested as therapeutic agents for wound healing and revascularization through the secretion of proangiogenic factors. However, methods of increasing cell paracrine secretion and survivability have thus far yielded inconsistent results. This study investigates the effect of pre-conditioning of hiPSC-VSMCs with TNF-α and their integration into 3D collagen scaffolds on cellular viability and secretome.</p><p><strong>Methods: </strong>hiPSC-VSMCs were dual-plated in a 2D environment. TNF-α was introduced to one plate. Following incubation, cells from each plate were divided and added to type-I collagen scaffolds. TNF-α was introduced to two sets of scaffolds, one from each 2D plate. Following incubation, scaffolds were harvested for their media, tested for cell survivability, cytotoxicity, and imaged. Intra-media VEGF and bFGF levels were evaluated using ELISA testing.</p><p><strong>Results: </strong>hiPSC-VSMCs exposed to TNF-α during collagen scaffold proliferation and preconditioning showed an increase in cell viability and less cytotoxicity compared to non-exposed cells and solely-preconditioned cells. Significant increases in bFGF expression were found in pre-conditioned cell groups with further increases found in cells subsequently exposed during intra-scaffold conditioning. A significant increase in VEGF expression was found in cell groups exposed during both pre-conditioning and intra-scaffold conditioning. Fibroblasts treated with any conditioned media demonstrated increased migration potential.</p><p><strong>Conclusions: </strong>Conditioning hiPSC-VSMCs embedded in scaffolds with TNF-α improves cellular viability and increases the secretion of paracrine factors necessary for wound healing mechanisms such as migration.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00764-0.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 3","pages":"231-240"},"PeriodicalIF":2.8,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Bard, Google's Experimental Chatbot Based on the LaMDA Large Language Model, Help to Analyze the Gender and Racial Diversity of Authors in Your Cited Scientific References? 谷歌基于 LaMDA 大语言模型的实验聊天机器人 Bard 能否帮助分析您引用的科学参考文献中作者的性别和种族多样性?
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-04-03 eCollection Date: 2023-04-01 DOI: 10.1007/s12195-023-00761-3
Michael R King
{"title":"Can Bard, Google's Experimental Chatbot Based on the LaMDA Large Language Model, Help to Analyze the Gender and Racial Diversity of Authors in Your Cited Scientific References?","authors":"Michael R King","doi":"10.1007/s12195-023-00761-3","DOIUrl":"10.1007/s12195-023-00761-3","url":null,"abstract":"<p><p>There is a growing recognition that scientific articles featuring women and people of color as first and last (senior) author are undercited in the literature relative to male and non-minority race authors. Some limited tools now exist to analyze the diversity of manuscript bibliographies, with acknowledged limitations. Recently the journal editors and publications chair of the Biomedical Engineering Society have recommended that authors include an optional \"Citation Diversity Statement\" in their articles, however adoption of this practice has, to date, been slow. Inspired by the current excitement and enthusiasm for artificial intelligence (AI) large language model chatbots, I sought to determine whether Google's new Bard chatbot could be used to assist authors in this process. It was determined that the Bard technology is not yet up to this task, however, by showing some modest improvement in the fidelity of references, combined with the not-yet realized live search capabilities, the author is nevertheless optimistic that this technology can one day be utilized for this purpose as it continues to improve.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 2","pages":"175-179"},"PeriodicalIF":2.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circ_0004585 Facilitates Tumorigenesis of Colorectal Cancer Via Modulating the miR-338-3p/ZFX Axis and Activating the MEK/ERK Pathway. Circ_0004585通过调节miR-338-3p/ZFX轴和激活MEK/ERK通路促进结直肠癌的发生。
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-04-01 DOI: 10.1007/s12195-022-00756-6
Zenghai Lin, Jianwei Lin
{"title":"Circ_0004585 Facilitates Tumorigenesis of Colorectal Cancer <i>Via</i> Modulating the miR-338-3p/ZFX Axis and Activating the MEK/ERK Pathway.","authors":"Zenghai Lin,&nbsp;Jianwei Lin","doi":"10.1007/s12195-022-00756-6","DOIUrl":"https://doi.org/10.1007/s12195-022-00756-6","url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is a common malignant tumor in the digestive tract. Circular RNAs (circRNAs) have been identified as crucial regulators of tumorigenesis. However, the role and potential mechanism of circ_0004585 in CRC are poorly understood.</p><p><strong>Methods: </strong>The expression of circ_0004585, microRNA-338-3p (miR-338-3p), and zinc finger protein X-linked (ZFX) was detected by quantitative real-time PCR and Western blot. Cell proliferation, cell cycle arrest, apoptosis, and angiogenesis were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry and tube formation assays. Western blot assay was applied to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins and MEK/ERK signaling pathway-related proteins. A xenograft model was used to analyze tumor growth <i>in vivo</i>. The targeted relationship between miR-338-3p and circ_0004585/ZFX was verified by a dual-luciferase reporter assay.</p><p><strong>Results: </strong>Circ_0004585 and ZFX were up-regulated, while miR-338-3p was down-regulated in CRC tissues and cells. Silencing of circ_0004585 inhibited proliferation, angiogenesis, and EMT and triggered apoptosis in CRC cells. Consistently, circ_0004585 depletion blocked tumor growth <i>in vivo</i>. Circ_0004585 contributed to CRC cell development <i>via</i> sequestering miR-338-3p. Also, miR-338-3p hindered the malignant progression of CRC cells by targeting ZFX. Circ_0004585 activated MEK/ERK pathway <i>via</i> regulating ZFX.</p><p><strong>Conclusion: </strong>Circ_0004585 facilitated CRC progression through modulating miR-338-3p/ZFX/MEK/ERK pathway, which might provide a potential therapeutic target for CRC.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00756-6.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 2","pages":"159-171"},"PeriodicalIF":2.8,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Integrative Biology Approach to Quantify the Biodistribution of Azidohomoalanine In Vivo. 量化阿齐多高丙氨酸体内生物分布的综合生物学方法
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-03-23 eCollection Date: 2023-04-01 DOI: 10.1007/s12195-023-00760-4
Aya M Saleh, Tyler G VanDyk, Kathryn R Jacobson, Shaheryar A Khan, Sarah Calve, Tamara L Kinzer-Ursem
{"title":"An Integrative Biology Approach to Quantify the Biodistribution of Azidohomoalanine <i>In Vivo</i>.","authors":"Aya M Saleh, Tyler G VanDyk, Kathryn R Jacobson, Shaheryar A Khan, Sarah Calve, Tamara L Kinzer-Ursem","doi":"10.1007/s12195-023-00760-4","DOIUrl":"10.1007/s12195-023-00760-4","url":null,"abstract":"<p><strong>Background: </strong>Identification and quantitation of newly synthesized proteins (NSPs) are critical to understanding protein dynamics in development and disease. Probing the nascent proteome can be achieved using non-canonical amino acids (ncAAs) to selectively label the NSPs utilizing endogenous translation machinery, which can then be quantitated with mass spectrometry. We have previously demonstrated that labeling the <i>in vivo</i> murine proteome is feasible via injection of azidohomoalanine (Aha), an ncAA and methionine (Met) analog, without the need for Met depletion. Aha labeling can address biological questions wherein temporal protein dynamics are significant. However, accessing this temporal resolution requires a more complete understanding of Aha distribution kinetics in tissues.</p><p><strong>Results: </strong>To address these gaps, we created a deterministic, compartmental model of the kinetic transport and incorporation of Aha in mice. Model results demonstrate the ability to predict Aha distribution and protein labeling in a variety of tissues and dosing paradigms. To establish the suitability of the method for <i>in vivo</i> studies, we investigated the impact of Aha administration on normal physiology by analyzing plasma and liver metabolomes following various Aha dosing regimens. We show that Aha administration induces minimal metabolic alterations in mice.</p><p><strong>Conclusions: </strong>Our results demonstrate that we can reproducibly predict protein labeling and that the administration of this analog does not significantly alter <i>in vivo</i> physiology over the course of our experimental study. We expect this model to be a useful tool to guide future experiments utilizing this technique to study proteomic responses to stimuli.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-023-00760-4.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 2","pages":"99-115"},"PeriodicalIF":2.8,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence, Chatbots, Plagiarism and Basic Honesty: Comment. 人工智能、聊天机器人、剽窃和基本诚信:评论。
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-02-17 eCollection Date: 2023-04-01 DOI: 10.1007/s12195-023-00759-x
Amnuay Kleebayoon, Viroj Wiwanitkit
{"title":"Artificial Intelligence, Chatbots, Plagiarism and Basic Honesty: Comment.","authors":"Amnuay Kleebayoon, Viroj Wiwanitkit","doi":"10.1007/s12195-023-00759-x","DOIUrl":"10.1007/s12195-023-00759-x","url":null,"abstract":"","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 2","pages":"173-174"},"PeriodicalIF":2.8,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-Targeting Extracellular Vesicles Loaded with siS100A4 for Suppressing Postoperative Breast Cancer Metastasis. 装载 siS100A4 的肿瘤靶向细胞外囊泡用于抑制乳腺癌术后转移
IF 2.8 4区 医学
Cellular and molecular bioengineering Pub Date : 2023-01-17 eCollection Date: 2023-04-01 DOI: 10.1007/s12195-022-00757-5
Ruiling Pan, Tiancheng He, Kun Zhang, Lewei Zhu, Jiawei Lin, Peixian Chen, Xiangwei Liu, Huiqi Huang, Dan Zhou, Wei Li, Shuqing Yang, Guolin Ye
{"title":"Tumor-Targeting Extracellular Vesicles Loaded with siS100A4 for Suppressing Postoperative Breast Cancer Metastasis.","authors":"Ruiling Pan, Tiancheng He, Kun Zhang, Lewei Zhu, Jiawei Lin, Peixian Chen, Xiangwei Liu, Huiqi Huang, Dan Zhou, Wei Li, Shuqing Yang, Guolin Ye","doi":"10.1007/s12195-022-00757-5","DOIUrl":"10.1007/s12195-022-00757-5","url":null,"abstract":"<p><strong>Introduction: </strong>S100A4 promotes the establishment of tumor microenvironment for malignant cancer cells, and knockdown of S100A4 can inhibit tumorigenesis. However, there is no efficient way to target S100A4 in metastatic tumor tissues. Here, we investigated the role of siS100A4-loaded iRGD-modified extracellular vesicles (siS100A4-iRGD-EVs) in postoperative breast cancer metastasis.</p><p><strong>Methods: </strong>siS100A4-iRGD-EVs nanoparticles were engineered and analyzed using TEM and DLS. siRNA protection, cellular uptake, and cytotoxicity of EV nanoparticles were examined <i>in vitro</i>. Postoperative lung metastasis mouse model was created to investigate the tissue distribution and anti-metastasis roles of nanoparticles <i>in vivo</i>.</p><p><strong>Results: </strong>siS100A4-iRGD-EVs protected siRNA from RNase degradation, enhanced the cellular uptake and compatibility <i>in vitro</i>. Strikingly, iRGD-modified EVs significantly increased tumor organotropism and siRNA accumulation in lung PMNs compared to siS100A4-EVs <i>in vivo</i>. Moreover, siS100A4-iRGD-EVs treatment remarkedly attenuated lung metastases from breast cancer and increased survival rate of mice through suppressing S100A4 expression in lung.</p><p><strong>Conclusions: </strong>siS100A4-iRGD-EVs nanoparticles show more potent anti-metastasis effect in postoperative breast cancer metastasis mouse model.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00757-5.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 2","pages":"117-125"},"PeriodicalIF":2.8,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信