{"title":"Matrin-3 acts as a potential biomarker and promotes hepatocellular carcinoma progression by interacting with cell cycle-regulating genes","authors":"Hengjing He, Muhammad Jamal, Xingruo Zeng, Yufei Lei, Di Xiao, Zimeng Wei, Chengjie Zhang, Xiaoyu Zhang, Shan Pan, Qianshan Ding, Haiyan Tan, Songping Xie, Qiuping Zhang","doi":"10.1080/15384101.2024.2305535","DOIUrl":"https://doi.org/10.1080/15384101.2024.2305535","url":null,"abstract":"Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The oncogenic role of Matrin-3 (MATR3), an a nuclear matrix protein, in HCC remains largely unknow...","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-01-24DOI: 10.1080/15384101.2024.2309026
Yan Wang, Wan-Li Ge, Shao-Jun Wang, Yu-Yong Liu, Zhi-Han Zhang, Yang Hua, Xiong-Fei Zhang, Jing-Jing Zhang
{"title":"MiR-548t-5p regulates pancreatic ductal adenocarcinoma metastasis through an IL-33-dependent crosstalk between cancer cells and M2 macrophages.","authors":"Yan Wang, Wan-Li Ge, Shao-Jun Wang, Yu-Yong Liu, Zhi-Han Zhang, Yang Hua, Xiong-Fei Zhang, Jing-Jing Zhang","doi":"10.1080/15384101.2024.2309026","DOIUrl":"10.1080/15384101.2024.2309026","url":null,"abstract":"<p><p>IL-33 has been associated with pro- and anticancer functions in cancer. However, its role in pancreatic cancer metastasis remains unknown. This study aimed to explore the role of miR-548t-5p/IL-33 axis in the metastasis of pancreatic cancer. Luciferase activity assay, qRT-PCR, Western blot and ELISA were performed to prove whether IL-33 is the target of miR-548t-5p. In vivo metastasis assay and cellular transwell assay were performed to explore the role of miR-548t-5p/IL-33 axis in the invasion and metastasis of pancreatic cancer. Co-culture experiments and immunohistochemistry were performed to observe whether IL-33 affects cell invasion and metastasis dependent on the involvement of M2 macrophages. THP-1 cell induction experiment and flow cytometry were performed to explore the effect of IL-33 on macrophage polarization. CCK-8, colony formation, cell apoptosis, cell cycle, cell wound healing and transwell assay were performed to investigate the effect of IL-33 induced M2 macrophages on cell malignant biological behavior by coculturing pancreatic cancer cells with the conditioned medium (CM) from macrophages. We found that miR-548t-5p regulated the expression and secretion of IL-33 in pancreatic cancer cells by directly targeting IL-33 mRNA. IL-33 secreted by cancer cells promoted the recruitment and activation of macrophages to a M2-like phenotype. In turn, IL-33 induced M2 macrophages promoted the migration and invasion of cancer cells. Moreover, IL-33 affected pancreatic cancer cell invasion dependent on the involvement of M2 macrophages in the co-culture system. Thus, our study suggested that manipulation of this IL-33-dependent crosstalk has a therapeutic potential for the treatment of pancreatic cancer metastasis.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-01-18DOI: 10.1080/15384101.2024.2304509
Lucía Simón-Carrasco, Elena Pietrini, Andrés J López-Contreras
{"title":"Integrated analysis of <i>FHIT</i> gene alterations in cancer.","authors":"Lucía Simón-Carrasco, Elena Pietrini, Andrés J López-Contreras","doi":"10.1080/15384101.2024.2304509","DOIUrl":"10.1080/15384101.2024.2304509","url":null,"abstract":"<p><p>The Fragile Histidine Triad Diadenosine Triphosphatase (<i>FHIT</i>) gene is located in the Common Fragile Site FRA3B and encodes an enzyme that hydrolyzes the dinucleotide Ap3A. Although <i>FHIT</i> loss is one of the most frequent copy number alterations in cancer, its relevance for cancer initiation and progression remains unclear. <i>FHIT</i> is frequently lost in cancers from the digestive tract, which is compatible with being a cancer driver event in these tissues. However, <i>FHIT</i> loss could also be a passenger event due to the inherent fragility of the FRA3B locus. Moreover, the physiological relevance of FHIT enzymatic activity and the levels of Ap3A is largely unclear. We have conducted here a systematic pan-cancer analysis of <i>FHIT</i> status in connection with other mutations and phenotypic alterations, and we have critically discussed our findings in connection with the literature to provide an overall view of FHIT implications in cancer.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139484640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-01-25DOI: 10.1080/15384101.2024.2309005
Jian Yang, Xue Wang, Tao Hu, He Huang, Gang Chen, Bo Jin, Guilin Zeng, Jian Liu
{"title":"Entero-toxigenic <i>Bacteroides fragilis</i> contributes to intestinal barrier injury and colorectal cancer progression by mediating the BFT/STAT3/ZEB2 pathway.","authors":"Jian Yang, Xue Wang, Tao Hu, He Huang, Gang Chen, Bo Jin, Guilin Zeng, Jian Liu","doi":"10.1080/15384101.2024.2309005","DOIUrl":"10.1080/15384101.2024.2309005","url":null,"abstract":"<p><p>Our previous findings confirmed the high enrichment of <i>Bacteroides fragilis</i> (BF) in fecal samples from patients with colorectal cancer (CRC). The intestinal mucosal barrier is the first defense of the organism against commensal flora and intestinal pathogens and is closely associated with the occurrence and development of CRC. Therefore, this study aimed to investigate the molecular mechanisms through which BF mediates intestinal barrier injury and CRC progression. SW480 cells and a Caco2 intestinal barrier model were treated with entero-toxigenic BF (ETBF), its enterotoxin (B. fragilis toxin, BFT), and non-toxigenic BF (NTBF). Cell counting kit-8, flow cytometry, wound healing and transwell assays were performed to analyze the proliferation, apoptosis, migration, and invasion of SW480 cells. Transmission electron microscopy, FITC-dextran, and transepithelial electrical resistance (TEER) were used to analyze damage in the Caco2 intestinal barrier model. The Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) animal model was established to evaluate the effect of ETBF on intestinal barrier injury and CRC progression <i>in vivo</i>. ETBF and BFT enhanced the viability, wound healing ratio, invasion, and EMT of SW480 cells. In addition, ETBF and BFT disrupted the tight junctions and villus structure in the intestinal barrier model, resulting in increased permeability and reduced TEER. Similarly, the expression of intestinal barrier-related proteins (MUC2, Occludin and Zo-1) was restricted by ETBF and BFT. Interestingly, the STAT3/ZEB2 axis was activated by ETBF and BFT, and treatment with Brevilin A (a STAT3 inhibitor) or knockdown of ZEB2 limited the promotional effect of ETBF and BFT on the SW480 malignant phenotype. <i>In vivo</i> experiments also confirmed that ETBF colonization accelerated tumor load, carcinogenesis, and intestinal mucosal barrier damage in the colorectum of the AOM/DSS animal model, and that treatment with Brevilin A alleviated these processes. ETBF-secreted BFT accelerated intestinal barrier damage and CRC by activating the STAT3/ZEB2 axis. Our findings provide new insights and perspectives for the application of ETBF in CRC treatment.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139563628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small extracellular vesicles promote the formation of the pre-metastatic niche through multiple mechanisms in colorectal cancer.","authors":"Jiyang Wu, Xiaoxing Wang, Zhengzhe Li, Xiaomei Yi, Die Hu, Qi Wang, Tianyu Zhong","doi":"10.1080/15384101.2024.2311501","DOIUrl":"10.1080/15384101.2024.2311501","url":null,"abstract":"<p><p>Colorectal cancer (CRC) ranks among the most prevalent global malignancies, posing significant threats to human life and health due to its high recurrence and metastatic potential. Small extracellular vesicles (sEVs) released by CRC play a pivotal role in the formation of the pre-metastatic niche (PMN) through various mechanisms, preparing the groundwork for accelerated metastatic invasion. This review systematically describes how sEVs promote CRC metastasis by upregulating inflammatory factors, promoting immunosuppression, enhancing angiogenesis and vascular permeability, promoting lymphangiogenesis and lymphatic network remodeling, determining organophilicity, promoting stromal cell activation and remodeling and inducing the epithelial-to-mesenchymal transition (EMT). Furthermore, we explore potential mechanisms by which sEVs contribute to PMN formation in CRC and propose novel insights for CRC diagnosis, treatment, and prognosis.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-03-05DOI: 10.1080/15384101.2024.2309020
Tianxin Luo, Xiaomei Chen, Wei Pan, Shu Zhang, Jian Huang
{"title":"The sorafenib resistance-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma.","authors":"Tianxin Luo, Xiaomei Chen, Wei Pan, Shu Zhang, Jian Huang","doi":"10.1080/15384101.2024.2309020","DOIUrl":"10.1080/15384101.2024.2309020","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death worldwide. Most patients with advanced HCC acquire sorafenib resistance. Drug resistance reflects the heterogeneity of tumors and is the main cause of tumor recurrence and death.We identified and validated sorafenib resistance related-genes (SRGs) as prognostic biomarkers for HCC. We obtained SRGs from the Gene Expression Omnibus and selected four key SRGs using the least absolute shrinkage and selection operator, random forest, and Support Vector Machine-Recursive feature elimination machine learning algorithms. Samples from the The Cancer Genome Atlas (TCGA)-HCC were segregated into two groups by consensus clustering. Following difference analysis, 19 SRGs were obtained through univariate Cox regression analysis, and a sorafenib resistance model was constructed for risk stratification and prognosis prediction. In multivariate Cox regression analysis, the risk score was an independent predictor of overall survival (OS). Patients classified as high-risk were more sensitive to other chemotherapy drugs and showed a higher expression of the common immune checkpoints. Additionally, the expression of drug-resistance genes was verified in the International Cancer Genome Consortium cohort. A nomogram model with a risk score was established, and its prediction performance was verified by calibration chart analysis of the TCGA-HCC cohort. We conclude that there is a significant correlation between sorafenib resistance and the tumor immune microenvironment in HCC. The risk score could be used to identify a reliable prognostic biomarker to optimize the therapeutic benefits of chemotherapy and immunotherapy, which can be helpful in the clinical decision-making for HCC patients.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-02-15DOI: 10.1080/15384101.2024.2314441
Zhongbing Luo, Fulan Yang, Kang Liu, Zhenluo Ding
{"title":"ZC3H12A inhibits tumor growth and metastasis of breast cancer under hypoxic condition via the inactivation of IL-17 signaling pathway.","authors":"Zhongbing Luo, Fulan Yang, Kang Liu, Zhenluo Ding","doi":"10.1080/15384101.2024.2314441","DOIUrl":"10.1080/15384101.2024.2314441","url":null,"abstract":"<p><p>Hypoxia is a major contributor to tumor microenvironment (TME) and metastasis in most solid tumors. We seek to screen hypoxia-related genes affecting metastasis in breast cancer and to reveal relative potential regulatory pathway. Based on gene expression profiling of GSE17188 dataset, differential expressed genes (DEGs) were identified between highly metastatic breast cancer cells under hypoxia and samples under normoxia. The protein-protein interaction (PPI) network was utilized to determine hub genes. The gene expression profiling interactive analysis database (GEPIA2) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were employed to quantify hub genes. Moreover, overexpression of zinc finger CCCH-type containing 12A (ZC3H12A) was performed both in breast cancer cells and xenograft mouse model to determine the role of ZC3H12A. We identified 134 DEGs between hypoxic and normoxic samples. Based on PPI analysis, 5 hub genes interleukin (IL)-6, GALN (GAL), CD22 molecule (CD22), ZC3H12A and TNF receptor associated factor 1 (TRAF1) were determined; the expression levels of TRAF1, IL-6, ZC3H12A and GAL were remarkably downregulated while CD22 was upregulated in breast cancer cells. Besides, patients with higher expression of ZC3H12A had favorable prognosis. Overexpression of ZC3H12A could inhibit metastasis and tumor growth of breast cancer; overexpression of ZC3H12A downregulated the expression of IL-17 signaling pathway-related proteins such as IL-17 receptor A (IL-17RA), IL-17A and nuclear factor κB activator 1 (Act1). This study reveals ZC3H12A and IL-17 signaling pathway as potential therapeutic targets for hypoxic breast cancer.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-02-11DOI: 10.1080/15384101.2024.2314440
Liton Kumar Saha, Yves Pommier
{"title":"TOP3A coupling with replication forks and repair of TOP3A cleavage complexes.","authors":"Liton Kumar Saha, Yves Pommier","doi":"10.1080/15384101.2024.2314440","DOIUrl":"10.1080/15384101.2024.2314440","url":null,"abstract":"<p><p>Humans have two Type IA topoisomerases, topoisomerase IIIα (TOP3A) and topoisomerase IIIβ (TOP3B). In this review, we focus on the role of human TOP3A in DNA replication and highlight the recent progress made in understanding TOP3A in the context of replication. Like other topoisomerases, TOP3A acts by a reversible mechanism of cleavage and rejoining of DNA strands allowing changes in DNA topology. By cleaving and resealing single-stranded DNA, it generates TOP3A-linked single-strand breaks as TOP3A cleavage complexes (TOP3Accs) with a TOP3A molecule covalently bound to the 5´-end of the break. TOP3A is critical for both mitochondrial and for nuclear DNA replication. Here, we discuss the formation and repair of irreversible TOP3Accs, as their presence compromises genome integrity as they form TOP3A DNA-protein crosslinks (TOP3A-DPCs) associated with DNA breaks. We discuss the redundant pathways that repair TOP3A-DPCs, and how their defects are a source of DNA damage leading to neurological diseases and mitochondrial disorders.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-01-23DOI: 10.1080/15384101.2024.2306760
Susmita Ghosh, Mamatha Garige, Patrick R Haggerty, Alexis Norris, Chao-Kai Chou, Wells W Wu, Rong-Fong Shen, Carole Sourbier
{"title":"Impact of sunitinib resistance on clear cell renal cell carcinoma therapeutic sensitivity <i>in vitro</i>.","authors":"Susmita Ghosh, Mamatha Garige, Patrick R Haggerty, Alexis Norris, Chao-Kai Chou, Wells W Wu, Rong-Fong Shen, Carole Sourbier","doi":"10.1080/15384101.2024.2306760","DOIUrl":"10.1080/15384101.2024.2306760","url":null,"abstract":"<p><p>Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139541942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-01-01Epub Date: 2024-01-23DOI: 10.1080/15384101.2024.2309017
Haoyuan Chen, Yangyang Shang, Xia Li, Rongquan Wang
{"title":"YAP1 expression in colorectal cancer confers the aggressive phenotypes via its target genes.","authors":"Haoyuan Chen, Yangyang Shang, Xia Li, Rongquan Wang","doi":"10.1080/15384101.2024.2309017","DOIUrl":"10.1080/15384101.2024.2309017","url":null,"abstract":"<p><p>Yes-associated protein1 (YAP1), a downstream effector of the Hippo pathway, is over-expressed in several types of malignancies. We analyzed retrospectively the TCGA database using 447 colorectal cancer (CRC) samples to determine the correlation between YAP1 expression level and CRC patient prognosis. YAP1-enforced expressed CRC cell lines were constructed using the lentivirus particles containing a YAP1 insert. YAP1 was highly expressed in CRC cancerous tissues and is associated with distant metastasis of CRC patients. Kaplan - Meier analysis indicated that CRC patients with a higher YAP1 expression group (<i>n</i> = 104) had worse disease-free survival (DFS) and overall survival (OS) than lower YAP1 expression group (<i>n</i> = 343) (<i>p</i> = 0.008 and <i>p</i> = 0.022). Univariate and multivariate analysis indicated that the elevated YAP1 expression predicted the aggressive phenotype and was an independent indicator for OS and DFS of CRC patients. YAP1 over-expression in CRC cells enhanced their migration and invasion significantly which can be reversed by AXL, CTGF, or CYR61 interference. The study suggested that YAP1 affected the prognosis of CRC patients and controlled the abilities of invasion and migration of CRC cells via its target genes AXL, CTGF, and CYR61.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139541964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}