Cell calciumPub Date : 2024-11-09DOI: 10.1016/j.ceca.2024.102968
Mohan Manjegowda, Bimal N. Desai
{"title":"Commentary on: Li et al.; Ca2+ transients on the T cell surface trigger rapid integrin activation in a timescale of seconds. Nature Communications (2024)","authors":"Mohan Manjegowda, Bimal N. Desai","doi":"10.1016/j.ceca.2024.102968","DOIUrl":"10.1016/j.ceca.2024.102968","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102968"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell calciumPub Date : 2024-11-02DOI: 10.1016/j.ceca.2024.102967
Sonja Sivcev , Stephanie Constantin , Kosara Smiljanic , Srdjan J. Sokanovic , Patrick A. Fletcher , Arthur S. Sherman , Hana Zemkova , Stanko S. Stojilkovic
{"title":"Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary","authors":"Sonja Sivcev , Stephanie Constantin , Kosara Smiljanic , Srdjan J. Sokanovic , Patrick A. Fletcher , Arthur S. Sherman , Hana Zemkova , Stanko S. Stojilkovic","doi":"10.1016/j.ceca.2024.102967","DOIUrl":"10.1016/j.ceca.2024.102967","url":null,"abstract":"<div><div>The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed <em>Sstr1, Sstr2, Sstr3,</em> and <em>Sstr5</em> receptor genes in a cell type-specific manner: <em>Sstr1</em> and <em>Sstr2</em> in thyrotrophs, <em>Sstr3</em> in gonadotrophs and lactotrophs, <em>Sstr2, Sstr3</em>, and <em>Sstr5</em> in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations. In contrast, lactotrophs and somatotrophs spontaneously fired low-amplitude plateau-bursting action potentials in conjunction with calcium transients, both of which were silenced by SST. Moreover, SST inhibited GPCR-induced voltage-gated calcium signaling and hormone secretion in all cell types expressing SST receptors, but the inhibition was more pronounced in somatotrophs. The pattern of inhibition of electrical activity and calcium signaling was consistent with both direct and indirect inhibition of voltage-gated calcium channels, the latter being driven by cell type-specific hyperpolarization. These results indicate that the action of SST in somatotrophs is enhanced by the expression of several types of SST receptors and their slow desensitization, that SST may play a role in the electrical resynchronization of gonadotrophs, thyrotrophs, and lactotrophs, and that the lack of SST receptors in corticotrophs and melanotrophs keeps them excitable and ready to responses to stress.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102967"},"PeriodicalIF":4.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell calciumPub Date : 2024-10-29DOI: 10.1016/j.ceca.2024.102966
Ioana Stejerean-Todoran , Christine S. Gibhardt , Ivan Bogeski
{"title":"Calcium signals as regulators of ferroptosis in cancer","authors":"Ioana Stejerean-Todoran , Christine S. Gibhardt , Ivan Bogeski","doi":"10.1016/j.ceca.2024.102966","DOIUrl":"10.1016/j.ceca.2024.102966","url":null,"abstract":"<div><div>The field of ferroptosis research has grown exponentially since this form of cell death was first identified over a decade ago. Ferroptosis, an iron- and ROS-dependent type of cell death, is controlled by various metabolic pathways, including but not limited to redox and calcium (Ca<sup>2+</sup>) homeostasis, iron fluxes, mitochondrial function and lipid metabolism. Importantly, therapy-resistant tumors are particularly susceptible to ferroptotic cell death, rendering ferroptosis a promising therapeutic strategy against numerous malignancies. Calcium signals are important regulators of both cancer progression and cell death, with recent studies indicating their involvement in ferroptosis. Cells undergoing ferroptosis are characterized by plasma membrane rupture and the formation of nanopores, which facilitate influx of ions such as Ca<sup>2+</sup> into the affected cells. Furthermore, mitochondrial Ca²⁺ levels have been implicated in directly influencing the cellular response to ferroptosis. Despite the remarkable progress made in the field, our understanding of the contribution of Ca<sup>2+</sup> signals to ferroptosis remains limited. Here, we summarize key connections between Ca²⁺ signaling and ferroptosis in cancer pathobiology and discuss their potential therapeutic significance.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102966"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell calciumPub Date : 2024-10-23DOI: 10.1016/j.ceca.2024.102962
David G. Nicholls
{"title":"Does a transmembrane sodium gradient control membrane potential in mammalian mitochondria?","authors":"David G. Nicholls","doi":"10.1016/j.ceca.2024.102962","DOIUrl":"10.1016/j.ceca.2024.102962","url":null,"abstract":"<div><div>In a recent publication, Hernansanz-Agusti̒n et al. propose that a sodium gradient across the inner mitochondrial membrane, generated by a Na<sup>+</sup>/H<sup>+</sup> activity integral to Complex I can account for half of the mitochondrial membrane potential. This conflicts with conventional electrophysiological and chemiosmotic understanding.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102962"},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell calciumPub Date : 2024-10-21DOI: 10.1016/j.ceca.2024.102964
Felipe Tribiños, Marcelo A. Catalan
{"title":"Calcium and chloride out of sync: The role of signaling in Sjögren's salivary gland issues","authors":"Felipe Tribiños, Marcelo A. Catalan","doi":"10.1016/j.ceca.2024.102964","DOIUrl":"10.1016/j.ceca.2024.102964","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102964"},"PeriodicalIF":4.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell calciumPub Date : 2024-10-18DOI: 10.1016/j.ceca.2024.102961
Tadashi Makio, Junsheng Chen, Thomas Simmen
{"title":"ER stress as a sentinel mechanism for ER Ca2+ homeostasis","authors":"Tadashi Makio, Junsheng Chen, Thomas Simmen","doi":"10.1016/j.ceca.2024.102961","DOIUrl":"10.1016/j.ceca.2024.102961","url":null,"abstract":"<div><div>Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca<sup>2+</sup> ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca<sup>2+</sup> binding, increases cytosolic Ca<sup>2+</sup>through the opening of ER Ca<sup>2+</sup> channels, and activates store-operated Ca<sup>2+</sup> entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca<sup>2+</sup> handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP<sub>3</sub>Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca<sup>2+</sup> homeostasis but also to increase Ca<sup>2+</sup> transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca<sup>2+</sup> signaling persists. ER Ca<sup>2+</sup> toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca<sup>2+</sup> content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca<sup>2+</sup> signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102961"},"PeriodicalIF":4.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell calciumPub Date : 2024-10-18DOI: 10.1016/j.ceca.2024.102963
Jan B. Parys
{"title":"The IP3 receptor-KRAP complex at the desmosomes: A new player in the apoptotic process","authors":"Jan B. Parys","doi":"10.1016/j.ceca.2024.102963","DOIUrl":"10.1016/j.ceca.2024.102963","url":null,"abstract":"<div><div>The IP<sub>3</sub> receptor (IP<sub>3</sub>R) is a ubiquitously expressed Ca<sup>2+</sup>-release channel located in the endoplasmic reticulum (ER). Ca<sup>2+</sup> signals originating from the IP<sub>3</sub>R initiate or regulate a plethora of cellular events, including cell life and death processes, e.g. exaggerated Ca<sup>2+</sup> release from the ER to the mitochondria is a trigger for apoptosis. Recently, Cho et al. (Current Biology, 2024, DOI: 10.1016/j.cub.2024.08.057) demonstrated that in epithelial monolayers a sustained [Ca<sup>2+</sup>] elevation caused by the IP<sub>3</sub>Rs is responsible for the extrusion of adjacent apoptotic cells out of the epithelial monolayer. Interestingly, the IP<sub>3</sub>Rs involved are associated with the desmosomes via K-Ras-induced actin-interacting protein (KRAP). This study not only highlight a novel role of the IP<sub>3</sub>R in apoptosis, but also shed a new light on how KRAP -and by extension KRAP-related proteins- contribute to the regulation of IP<sub>3</sub>R activity and, more broadly, underscores the crucial role of associated proteins in determining the function of IP<sub>3</sub>Rs.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102963"},"PeriodicalIF":4.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell calciumPub Date : 2024-10-08DOI: 10.1016/j.ceca.2024.102959
Jiuzhou Huo, Jeffery D. Molkentin
{"title":"MICU1 and MICU2, two peas in a pod or entirely different fruits?","authors":"Jiuzhou Huo, Jeffery D. Molkentin","doi":"10.1016/j.ceca.2024.102959","DOIUrl":"10.1016/j.ceca.2024.102959","url":null,"abstract":"<div><div>Fluctuations in mitochondrial matrix Ca<sup>2+</sup> plays a critical role in matching energy production to cellular demand through direct effects on oxidative phosphorylation and ATP production. Disruption in mitochondrial Ca<sup>2+</sup> homeostasis, particularly under pathological conditions such as ischemia or heart failure, can lead to mitochondrial dysfunction, energy deficit, and eventually death of cardiomyocytes. The primary channel regulating acute mitochondrial Ca<sup>2+</sup> influx is the mitochondrial Ca<sup>2+</sup> uniporter (mtCU), which is regulated by the mitochondrial Ca<sup>2+</sup> uptake (MICU) proteins that were examined here.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102959"},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}