{"title":"Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9.","authors":"Fei Yan, Yue Teng, Xiaoyou Li, Yuejiao Zhong, Chunyi Li, Feng Yan, Xia He","doi":"10.1080/15384047.2024.2304161","DOIUrl":"10.1080/15384047.2024.2304161","url":null,"abstract":"<p><strong>Background: </strong>Lung cancer is the deadliest form of malignancy and the most common subtype is non-small cell lung cancer (NSCLC). Hypoxia is a typical feature of solid tumor microenvironment. In the current study, we clarified the effects of hypoxia on stemness and metastasis and the molecular mechanism.</p><p><strong>Methods: </strong>The biological functions were assessed using the sphere formation assay, Transwell assay, and XF96 extracellular flux analyzer. The protein levels were detected by western blot. The lactylation modification was assessed by western blot and immunoprecipitation. The role of SOX9 in vivo was explored using a xenografted tumor model.</p><p><strong>Results: </strong>We observed that hypoxia promoted sphere formation, migration, invasion, glucose consumption, lactate production, glycolysis, and global lactylation. Inhibition of glycolysis suppressed cell stemness, migration, invasion, and lactylation. Moreover, hypoxia increased the levels of SOX9 and lactylation of SOX9, whereas inhibition of glycolysis reversed the increase. Additionally, knockdown of SOX9 abrogated the promotion of cell stemness, migration, and invasion. In tumor-bearing mice, overexpression of SOX9 promoted tumor growth, and inhibition of glycolysis suppressed tumor growth.</p><p><strong>Conclusion: </strong>Hypoxia induced the lactylation of SOX9 to promote stemness, migration, and invasion via promoting glycolysis. The findings suggested that targeting hypoxia may be an effective way for NSCLC treatment and reveal a new mechanism of hypoxia in NSCLC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KLF7 enhances the invasion and migration of colorectal cancer cells via the miR-139-5p/TPD52 axis.","authors":"Juan Zhang, Zhihan Li, Jiaxu Han, Zhongtao Tian, Qingyu Meng, Wenbo Niu","doi":"10.1080/15384047.2024.2385172","DOIUrl":"10.1080/15384047.2024.2385172","url":null,"abstract":"<p><p>In this study, we aimed to investigate the molecular mechanism of Krüppel-like factor 7 (KLF7) in colorectal cancer (CRC) cell invasion and migration. The expression pattern of KLF7 in CRC tissues and the correlation between KLF7 expression and clinical symptoms of CRC were analyzed. CRC cell lines were transfected with si-KLF7, followed by qRT-PCR or western blot detection of KLF7, miR-139-5p, and tumor protein D52 (TPD52) expression, cell counting kit-8 (CCK-8) assay to detect cell viability, and transwell detection of invasion and migration. Chromatin immunoprecipitation (ChIP) analyzed the enrichment KLF7 in the miR-139-5p promoter. The dual-luciferase reporter assay verified the binding relationship between KLF7 and miR-139-5p, and between miR-139-5p and TPD52. In the subcutaneous tumorigenesis experiment, tumor growth was observed and ki67-positive expression was detected. KLF7 is abundantly expressed in CRC cells KLF7 silencing inhibits CRC cell viability, invasion, and migration. KLF7 represses miR-139-5p expression by binding to the miR-139-5p promoter. miR-139-5p targets TPD52 expression. miR-13-5p inhibition or TPD52 overexpression partially counteracted the effect of KLF7 silencing in CRC cells. KLF7 silencing suppresses tumor growth <i>in vivo</i>. In conclusion, KLF7 suppresses miR-139-5p expression by binding to the miR-139-5p promoter, thereby upregulating TPD52 expression and enhancing CRC cell invasion and migration.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2024-12-31Epub Date: 2024-02-23DOI: 10.1080/15384047.2024.2321768
Qinghui Niu, Susu Ye, Liu Zhao, Yanzhi Qian, Fengchao Liu
{"title":"The role of liver cancer stem cells in hepatocellular carcinoma metastasis.","authors":"Qinghui Niu, Susu Ye, Liu Zhao, Yanzhi Qian, Fengchao Liu","doi":"10.1080/15384047.2024.2321768","DOIUrl":"10.1080/15384047.2024.2321768","url":null,"abstract":"<p><p>Metastasis accounts for the vast majority of cancer deaths; however, this complex process has yet to be fully explained. To form metastases, cancer cells must undergo a series of steps, known as the \"Metastatic cascade\", each of which requires a specific functional transformation. Cancer stem cells (CSCs) play a vital role in tumor metastasis, but their dynamic behavior and regulatory mechanisms have not been fully elucidated. Based on the \"Metastatic cascade\" theory, this review summarizes the effect of liver CSCs on the metastatic biological programs that underlie the dissemination and metastatic growth of cancer cells. Liver CSCs have the capacity to initiate distant organ metastasis via EMT, and the microenvironment transformation that supports the ability of these cells to disseminate, evade immune surveillance, dormancy, and regenerate metastasis. Understanding the heterogeneity and traits of liver CSCs in these processes is critical for developing strategies to prevent and treat metastasis of advanced hepatocellular carcinoma (HCC).</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2024-12-31Epub Date: 2024-03-11DOI: 10.1080/15384047.2024.2323768
Yusi Wang, Hongyan Zou, Wei Ji, Min Huang, Benhui You, Nan Sun, Yuandong Qiao, Peng Liu, Lidan Xu, Xuelong Zhang, Mengdi Cai, Ye Kuang, Songbin Fu, Wenjing Sun, Xueyuan Jia, Jie Wu
{"title":"Repression of the SUMO-conjugating enzyme UBC9 is associated with lowered double minutes and reduced tumor progression.","authors":"Yusi Wang, Hongyan Zou, Wei Ji, Min Huang, Benhui You, Nan Sun, Yuandong Qiao, Peng Liu, Lidan Xu, Xuelong Zhang, Mengdi Cai, Ye Kuang, Songbin Fu, Wenjing Sun, Xueyuan Jia, Jie Wu","doi":"10.1080/15384047.2024.2323768","DOIUrl":"10.1080/15384047.2024.2323768","url":null,"abstract":"<p><p>Double minutes (DMs), extrachromosomal gene fragments found within certain tumors, have been noted to carry onco- and drug resistance genes contributing to tumor pathogenesis and progression. After screening for SUMO-related molecule expression within various tumor sample and cell line databases, we found that SUMO-conjugating enzyme UBC9 has been associated with genome instability and tumor cell DM counts, which was confirmed both <i>in vitro</i> and <i>in vivo</i>. Karyotyping determined DM counts post-UBC9 knockdown or SUMOylation inhibitor 2-D08, while RT-qPCR and Western blot were used to measure DM-carried gene expression <i>in vitro</i>. <i>In vivo</i>, fluorescence in situ hybridization (FISH) identified micronucleus (MN) expulsion. Western blot and immunofluorescence staining were then used to determine DNA damage extent, and a reporter plasmid system was constructed to detect changes in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Our research has shown that UBC9 inhibition is able to attenuate DM formation and lower DM-carried gene expression, in turn reducing tumor growth and malignant phenotype, via MN efflux of DMs and lowering NHEJ activity to increase DNA damage. These findings thus reveal a relationship between heightened UBC9 activity, increased DM counts, and tumor progression, providing a potential approach for targeted therapies, via UBC9 inhibition.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2024-12-31Epub Date: 2024-03-17DOI: 10.1080/15384047.2024.2329372
Shufeng Liu, Xiaoguang Chen, Liqi Zhang, Bo Lu
{"title":"CPT1A mediates the succinylation of SP5 which activates transcription of PDPK1 to promote the viability and glycolysis of prostate cancer cells.","authors":"Shufeng Liu, Xiaoguang Chen, Liqi Zhang, Bo Lu","doi":"10.1080/15384047.2024.2329372","DOIUrl":"10.1080/15384047.2024.2329372","url":null,"abstract":"<p><p>Succinylation modification involves in the progression of human cancers. The present study aimed to investigate the role of CPT1A, which is a succinyltransferase in the progression of prostate cancer (PCa). CCK-8 was used to detect the cell viability. Seahorse was performed to evaluate the cell glycolysis. Luciferase assay was used to detect the transcriptional regulation. ChIP was performed to assess the binding between transcriptional factors with the promoters. Co-IP was used to assess the binding between proteins. We found that CPT1A was highly expressed in PCa tissues and cell lines. Silencing of CPT1A inhibited the viability and glycolysis of PCa cells. Mechanistically, CPT1A promoted the succinylation of SP5, which strengthened the binding between SP5 and the promoter of PDPK1. SP5 activated PDPK1 transcription and PDPK1 activated the AKT/mTOR signal pathway. These findings might provide novel targets for the diagnosis or therapy of prostate cancer.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2024-12-31Epub Date: 2024-05-13DOI: 10.1080/15384047.2024.2349429
Lijie Li, Jie Zeng, Sili He, Yanfei Yang, Chen Wang
{"title":"METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer.","authors":"Lijie Li, Jie Zeng, Sili He, Yanfei Yang, Chen Wang","doi":"10.1080/15384047.2024.2349429","DOIUrl":"10.1080/15384047.2024.2349429","url":null,"abstract":"<p><p>Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both <i>in vitro</i> and <i>in vivo</i> by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. <i>In vivo</i> xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2024-12-31Epub Date: 2024-09-02DOI: 10.1080/15384047.2024.2398297
Shutian Liu, Ting Xu, Xi Chen, Li Tang, Longjiang Li, Li Zhang, Yongqiang Yang, Jiayi Huang
{"title":"TP53AIP1 induce autophagy via the AKT/mTOR signaling pathway in the breast cancer cells.","authors":"Shutian Liu, Ting Xu, Xi Chen, Li Tang, Longjiang Li, Li Zhang, Yongqiang Yang, Jiayi Huang","doi":"10.1080/15384047.2024.2398297","DOIUrl":"10.1080/15384047.2024.2398297","url":null,"abstract":"<p><p>Breast cancer ranks the first in the incidence of female cancer and is the most common cancer threatening the life and health of women worldwide.Tumor protein p53-regulated apoptosis-inducing protein 1 (TP53AIP1) is a pro-apoptotic gene downstream of p53. However, the role of TP53AIP1 in BC needs to be investigated. In vitro and in vivo experiments were conducted to assess the biological functions and associated mechanisms. Several bioinformatics analyses were made, CCK8 assay, wound healing, transwell assays, colony formation assay, EDU, flow cytometry, Immunofluorescence, qRT-PCR and Western-blotting were performed. In our study, we discovered that BC samples had low levels of TP53AIP1 expression, which correlated with a lower survival rate in BC patients. When TP53AIP1 was up-regulated, it caused a decrease in cell proliferation, migration, and invasion. It also induced epithelial-to-mesenchymal transition (EMT) and protective autophagy. Furthermore, the over-expression of TP53AIP1 suppressed tumor growth when tested in vivo. We also noticed that TP53AIP1 up-regulation resulted in decreased levels of phosphorylation in AKT and mTOR, suggesting a mechanistic role. In addition, we performed functional rescue experiments where the activation of AKT was able to counteract the impact of TP53AIP1 on the survival and autophagy in breast cancer cell lines. This suggests that TP53AIP1 acts as an oncogene by controlling the AKT/mTOR pathway. These findings reveal TP53AIP1 as a gene that suppresses tumor growth and triggers autophagy through the AKT/mTOR pathway in breast cancer cells. As a result, TP53AIP1 presents itself as a potential target for novel therapeutic approaches in treating breast cancer.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2024-12-31Epub Date: 2024-08-22DOI: 10.1080/15384047.2024.2392902
Guangqi Li, Qinhui Li, Yongqing Tong, Jin Zeng, Tiantian Dang, Ningai Yang, Yuning Zhou, Lei Ma, Qirui Ge, Zhijun Zhao
{"title":"The anticancer mechanisms of <i>Toxoplasma gondii</i> rhoptry protein 16 on lung adenocarcinoma cells.","authors":"Guangqi Li, Qinhui Li, Yongqing Tong, Jin Zeng, Tiantian Dang, Ningai Yang, Yuning Zhou, Lei Ma, Qirui Ge, Zhijun Zhao","doi":"10.1080/15384047.2024.2392902","DOIUrl":"10.1080/15384047.2024.2392902","url":null,"abstract":"<p><p>Lung adenocarcinoma is the most prevalent subtype of lung cancer, which is the leading cause of cancer-related mortality worldwide. <i>Toxoplasma gondii</i> (<i>T.gondii</i>) Rhoptry protein 16 (ROP16) has been shown to quickly enter the nucleus, and through activate host cell signaling pathways by phosphorylation STAT3 and may affect the survival of tumor cells. This study constructed recombinant lentiviral expression vector of <i>T. gondii</i> ROP16 I/II/III and stably transfected them into A549 cells, and the effects of ROP16 on cell proliferation, cell cycle, apoptosis, invasion, and migration of A549 cells were explored by utilizing CCK-8, flow cytometry, qPCR, Western blotting, TUNEL, Transwell assay, and cell scratch assay, and these effects were confirmed in the primary human lung adenocarcinoma cells from postoperative cancer tissues of patients. The type I and III ROP16 activate STAT3 and inhibited A549 cell proliferation, regulated the expression of p21, CDK6, CyclinD1, and induced cell cycle arrest at the G1 phase. ROP16 also regulated the Bax, Bcl-2, p53, cleaved-Caspase3, and Caspase9, inducing cell apoptosis, and reduced the invasion and migration of A549 cells, while type II ROP16 protein had no such effect. Furthermore, in the regulation of ROP16 on primary lung adenocarcinoma cells, type I and III ROP16 showed the same anticancer potential. These findings confirmed the anti-lung adenocarcinoma effect of type I and III ROP16, offering fresh perspectives on the possible application of ROP16 as a target with adjuvant therapy for lung adenocarcinoma and propelling the field of precision therapy research toward parasite treatment of tumors.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2024-12-31Epub Date: 2024-09-28DOI: 10.1080/15384047.2024.2408042
Jianjun Wang, Qifan Jia, Jingyao Sun, Sen Wu, Li Wei, Wenjian Yao
{"title":"Arntl-induced upregulation of DUSP1 inhibits tumor progression in esophageal squamous cell carcinoma by inactivating ERK signaling.","authors":"Jianjun Wang, Qifan Jia, Jingyao Sun, Sen Wu, Li Wei, Wenjian Yao","doi":"10.1080/15384047.2024.2408042","DOIUrl":"10.1080/15384047.2024.2408042","url":null,"abstract":"<p><strong>Background: </strong>Esophageal squamous cell carcinoma (ESCC) is a primary histological type of esophageal carcinoma with high morbidity. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL) is a circadian clock gene associated with the progression of multiple tumors. However, its roles and mechanisms in ESCC remain unknown.</p><p><strong>Methods: </strong>ARNTL expression was analyzed using TCGA database and detected using qRT-PCR, and ARNTL-related pathways were analyzed through GSEA. Cell functional behaviors were assessed in vitro by measuring cell viability, proliferation, and apoptosis. Cell growth in the murine model was investigated through xenograft model and immunofluorescence assays of PCNA and Ki67. The downstream targets of ARNTL were analyzed through sequencing and identified via luciferase report, ChIP, and RNA pull-down analyses. Dual-specificity protein phosphatase-1 (DUSP1) expression was analyzed using GEO datasets and measured using qRT-PCR and western blotting. Protein expression was examined via western blotting.</p><p><strong>Results: </strong>ARNTL expression was decreased in esophageal carcinoma and associated with histological types, and elevated expression of ARNTL repressed ESCC cell viability and proliferation and facilitated cell apoptosis. ARNTL upregulation reduced tumor cell growth in murine models and decreased PCNA and Ki67 levels. Furthermore, DUSP1 was downregulated upon ARNTL silencing in ESCC. ARNTL could bind and positively regulate DUSP1 transcription. Additionally, DUSP1 silencing reversed the influences of ARNTL upregulation on cell viability, proliferation, and apoptosis in ESCC cells. ARNTL attenuated the activation of the ERK signaling by decreasing ERK phosphorylation through upregulation of DUSP1.</p><p><strong>Conclusion: </strong>ARNTL hinders cell growth and contributes to cell apoptosis by inactivating ERK signaling through transcriptional upregulation of DUSP1 in ESCC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NRS2002 score as a prognostic factor in solid tumors treated with immune checkpoint inhibitor therapy: a real-world evidence analysis.","authors":"Wanfen Tang, Chenghui Li, Dong Huang, Shishi Zhou, Hongjuan Zheng, Qinghua Wang, Xia Zhang, Jianfei Fu","doi":"10.1080/15384047.2024.2358551","DOIUrl":"10.1080/15384047.2024.2358551","url":null,"abstract":"<p><p>To observe the antitumour efficacy of programmed death 1 (PD-1) inhibitors in the real world and explore the relationship between NRS2002 score or other clinical characteristics and immunotherapy efficacy, we retrospectively analyzed 341 tumor patients who received immune checkpoint inhibitor (ICI) treatment at one center. A total of 341 solid tumor patients treated with ICIs from June 2018 to December 2021 were retrospectively included in this study. Patient characteristics, ICI responses, and survival status were documented, and the relationships between clinical factors and survival were analyzed. Among all patients, the median progression-free survival (PFS) was 5.8 months, and the median overall survival (OS) was 12.5 months. The Performance Status (PS), NRS2002 score, The Naples Prognostic Score (NPS), Lymphocyte and C-reactive protein ratio (LCR), line of therapy, and nutritional support were significantly related to PFS or OS according to univariate analysis. The median PFS and OS were significantly better in the group without nutritional risk (NRS2002 0-2) than those with nutritional risk (NRS2002 ≥ 3) (PFS: HR = 1.82, 95% CI 1.30-2.54, <i>p</i> value < .001; OS: HR = 2.49, 95% CI 1.73-3.59, <i>p</i> value < .001). Cox regression analysis revealed that the NRS2002 score was an independent prognostic factor for both PFS and OS. The objective response rate (ORR) in the group at nutritional risk was lower than that in the group without nutritional risk (8.33% and 19.71%, respectively, <i>p</i> value = .037). Patients at nutritional risk according to the NRS2002 score at initial treatment had a poorer prognosis than those without nutritional risk. The NRS2002 could be used as a preliminary index to predict the efficacy of immune checkpoint inhibitor therapy.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}