Cancer Biology & TherapyPub Date : 2025-12-01Epub Date: 2024-12-19DOI: 10.1080/15384047.2024.2442556
Shi-Ming Tan, Lan Luo, Yi-Fu He, Wei Li, Xin-Xing Wan
{"title":"Daurisoline inhibits glycolysis of lung cancer by targeting the AKT-HK2 axis.","authors":"Shi-Ming Tan, Lan Luo, Yi-Fu He, Wei Li, Xin-Xing Wan","doi":"10.1080/15384047.2024.2442556","DOIUrl":"10.1080/15384047.2024.2442556","url":null,"abstract":"<p><p>Lung cancer, one of the most prevalent tumors, remains a clinical challenge with a poor five-year survival rate. Daurisoline, a bis-benzylisoquinoline alkaloid derived from the traditional Chinese herb Menispermum dauricum, is known to suppress tumor growth effectively. However, its precise mechanism of action remains unclear. In this study, we demonstrate that Daurisoline targets glycolysis and reduces the protein level of HK2, thereby inhibiting lung cancer progression. Mechanistic investigations reveal that Daurisoline directly binds to AKT and antagonizes the AKT-GSK3β-c-Myc-HK2 signaling axis. Furthermore, in an animal model, we validate the in vivo anti-tumor effect of Daurisoline without any observable side effects. Overall, our findings suggest that Daurisoline holds potential as an anti-tumor agent through its targeting of glycolysis.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2442556"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2025-12-01Epub Date: 2024-12-24DOI: 10.1080/15384047.2024.2441511
Qiancheng Wang, Shiyang Jin, Zeshen Wang, Yuming Ju, Kuan Wang
{"title":"Long-term effects of neoadjuvant chemotherapy in variant histology locally advanced colon cancer: a propensity score-matched analysis.","authors":"Qiancheng Wang, Shiyang Jin, Zeshen Wang, Yuming Ju, Kuan Wang","doi":"10.1080/15384047.2024.2441511","DOIUrl":"https://doi.org/10.1080/15384047.2024.2441511","url":null,"abstract":"<p><strong>Purpose: </strong>Neoadjuvant chemotherapy (NAC) has proven valuable in treating locally advanced colon cancer (LACC) and is included as a treatment option for patients with clinical T4b colon cancer by the National Comprehensive Cancer Network. However, the long-term survival benefit of NAC in LACC remains debated, due to a lack of conclusive clinical trial results identifying the patients who would benefit most from NAC. This study aimed to assess the efficacy of NAC in patients with LACC based on histological subtype.</p><p><strong>Patients and methods: </strong>This retrospective study analyzed 3,709 patients with LACC who underwent curative resection at Harbin Medical University Cancer Hospital between 2014 and 2018. Patients were grouped into two groups: neoadjuvant chemotherapy (NAC) and adjuvant chemotherapy (AC) groups. Propensity score matching (PSM) was used to adjust for confounders, and survival outcomes of the two groups across different histological subtypes were evaluated using Kaplan-Meier (K-M) curves and log-rank tests.</p><p><strong>Results: </strong>Patients with non-mucinous adenocarcinoma (NMAC) treated with NAC had a significantly improved 5-year OS rate (76.3% vs. 69.2%, <i>p</i> = .039) and DFS rate (67.2% vs. 60.1%, <i>p</i> = .041) compared with patients treated with AC. However, there was no significant difference in OS and DFS between the two treatment groups among patients with mucinous adenocarcinoma (MAC) and signet ring cell carcinoma (SRCC).</p><p><strong>Conclusion: </strong>In patients with LACC, the prognostic value of NAC varied by histology. NMAC may serve as a predictor of improved long-term survival benefit from NAC in these patients.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2441511"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2025-12-01Epub Date: 2025-01-26DOI: 10.1080/15384047.2025.2455722
Paola A Castagnino, Derick A Haas, Luca Musante, Nathalia A Tancler, Bach V Tran, Rhonda Kean, Alexandra R Steck, Luis A Martinez, Elahe A Mostaghel, D Craig Hooper, Felix J Kim
{"title":"Sigma1 inhibitor suppression of adaptive immune resistance mechanisms mediated by cancer cell derived extracellular vesicles.","authors":"Paola A Castagnino, Derick A Haas, Luca Musante, Nathalia A Tancler, Bach V Tran, Rhonda Kean, Alexandra R Steck, Luis A Martinez, Elahe A Mostaghel, D Craig Hooper, Felix J Kim","doi":"10.1080/15384047.2025.2455722","DOIUrl":"10.1080/15384047.2025.2455722","url":null,"abstract":"<p><p>Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER. Sigma1 is a unique ligand-regulated integral membrane scaffolding protein enriched in the ER of cancer cells. PD-L1 is an integral membrane glycoprotein that is translated into the ER and processed through the cellular secretory pathway. At the cell surface, PD-L1 is an immune checkpoint molecule that binds PD-1 on activated T-cells and blocks anti-tumor immunity. PD-L1 can also be incorporated into cancer cell-derived extracellular vesicles (EVs), and EV-associated PD-L1 can inactivate T-cells within the tumor microenvironment. Here, we demonstrate that a selective small molecule inhibitor of Sigma1 can block IFN-γ mediated adaptive immune resistance in part by altering the incorporation of PD-L1 into cancer cell-derived EVs. Sigma1 inhibition blocked post-translational maturation of PD-L1 downstream of IFN-γ/STAT1 signaling. Subsequently, EVs released in response to IFN-γ stimulation were significantly less potent suppressors of T-cell activation. These results suggest that by reducing tumor derived immune suppressive EVs, Sigma1 inhibition may promote antitumor immunity. Sigma1 modulation presents a novel approach to regulating the tumor immune microenvironment by altering the content and production of EVs. Altogether, these data support the notion that Sigma1 may play a role in adaptive immune resistance in the tumor microenvironment.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2455722"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2025-12-01Epub Date: 2025-04-08DOI: 10.1080/15384047.2025.2486141
Ichwaku Rastogi, John A Mannone, Ruslan Gibadullin, Jena E Moseman, John Sidney, Alessandro Sette, Douglas G McNeel, Samuel H Gellman
{"title":"β-amino acid substitution in the SIINFEKL antigen alters immunological recognition.","authors":"Ichwaku Rastogi, John A Mannone, Ruslan Gibadullin, Jena E Moseman, John Sidney, Alessandro Sette, Douglas G McNeel, Samuel H Gellman","doi":"10.1080/15384047.2025.2486141","DOIUrl":"10.1080/15384047.2025.2486141","url":null,"abstract":"<p><strong>Background: </strong>Peptide vaccines offer a direct way to initiate an immunogenic response to a defined antigen epitope. However, peptide vaccines are unstable <i>in vivo</i>, subject to rapid enzymatic proteolysis. Replacement of an α-amino acid residue with a homologous β-amino acid residue (native side chain, but backbone extended by a single CH<sub>2</sub> unit) impairs proteolysis at nearby amide bonds. Therefore, antigen analogues containing α-to-β replacements have been examined for functional mimicry of native all-α antigens. Another group previously took this approach in the ovalbumin (OVA) antigen model by evaluating single α-to-β analogues of the murine major histocompatibility complex (MHC) I-restricted peptide SIINFEKL.</p><p><strong>Methods: </strong>We re-examined this set of α/β SIINFEKL antigens. We tested the susceptibility to proteolysis in mouse serum and their ability to activate OVA-antigen-specific CD8 T cells <i>in vitro</i>. Additionally, we tested the α/β antigens <i>in vivo</i> for their ability to induce an antigen-specific immunogenic response in naïve mice and in OVA-expressing tumor-bearing mice.</p><p><strong>Results: </strong>The α/β antigens were comparable to the native antigen in their susceptibility to proteolysis in serum. Each α/β antigen was capable of activating antigen-specific CD8 T cells <i>in</i> <i>vitro</i>. However, antigen-specific CD8 T cells induced against α/β antigens <i>in</i> <i>vivo</i> were not cross-reactive to the native antigen. Moreover, immunization with α/β analogues did not elicit anti-tumor effects in tumor-bearing mice.</p><p><strong>Conclusions: </strong>We conclude that even though α/β analogues of the SIINFEKL antigen can elicit a T cell-based response, this class of backbone-modified peptides is not promising from the perspective of antitumor vaccine development.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2486141"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractionated radiotherapy initiated at the early stage of bone metastasis is effective to prolong survival in mouse model.","authors":"Yun Zhang, Zhunyi Gao, Ziwei Qi, Jiahe Xu, Jiao Xue, Lujie Xiong, Junhui Wang, Yuhui Huang, Songbing Qin","doi":"10.1080/15384047.2025.2455756","DOIUrl":"10.1080/15384047.2025.2455756","url":null,"abstract":"<p><strong>Background and purpose: </strong>Bone metastasis is common for breast cancer and associated with poor prognosis. Currently, radiotherapy (RT) serves as the standard treatment for patients exhibiting symptoms of bone metastasis to alleviate pain. Whether earlier application of RT will better control bone metastasis remains unclear.</p><p><strong>Methods: </strong>We utilized a mouse model of breast cancer bone metastasis by intra-femoral injection of 4T1-luc breast tumor cells. The bone metastasis was treated by RT using various doses, timings, and modalities. Tumor growth was assessed through bioluminescence imaging, and lung metastases was quantified following lung tissue fixation. Flow cytometry was employed to analyze alterations in immune cell populations.</p><p><strong>Results: </strong>Single high-dose RT suppressed tumor growth of bone metastases, but caused severe side effects. Conversely, fractionated RT mitigated tumor growth in bone metastases with fewer adverse effects. Fractioned RT initiated at the early stage of bone metastasis effectively inhibited tumor growth in the bone, suppressed secondary lung metastases, and prolonged mouse survival. In line with the known pro- and anti-metastatic effects of neutrophils and T cells in breast cancer, respectively, earlier fractioned RT consistently decreased the proportions of neutrophils while increased the proportions of T cells in both the bone and the lung tissues.</p><p><strong>Conclusion: </strong>The data suggest that fractionated RT can inhibit the progression of early stage of bone metastasis and reduce secondary lung metastasis, leading to favorable outcomes. Therefore, these findings provide preclinical evidence to support the application of fractionated RT to treat patients with bone metastasis as earlier as possible.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2455756"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2025-12-01Epub Date: 2025-05-09DOI: 10.1080/15384047.2025.2503417
Crawford Currie, Christian Bjerknes, McKayla Nicol, Sateesh Kumar, Bomi Framroze
{"title":"Assessing the potential for in vivo modulation of <i>FTH1 gene</i> expression with small peptides to restore and enhance androgen receptor pathway inhibition in prostate cancer.","authors":"Crawford Currie, Christian Bjerknes, McKayla Nicol, Sateesh Kumar, Bomi Framroze","doi":"10.1080/15384047.2025.2503417","DOIUrl":"https://doi.org/10.1080/15384047.2025.2503417","url":null,"abstract":"<p><p>Increased levels of intratumoral free iron drive more aggressive behavior with the development of treatment resistance and spread in a range of cancers including prostate cancer (PCa). This phenotype is associated with an increase in TFRC expression and a decrease in FTH1, a profile supporting increased iron acquisition. In this study we investigated the anti-oncogenic effects of two small peptides (FT-002 and FT-005) that upregulate FTH1 expression and downregulate TFRC expression when combined with standard androgen receptor pathway inhibitors (ARPIs) in xenograft models of PCa in male athymic nude mice. The PC3 cell line was used to establish xenografts representing highly aggressive, androgen-resistant PCa and the LNCaP cell line as a model of androgen-sensitive PCa. Both peptides enhanced the anti-tumor efficacy of ARPI therapy. Efficacy was more marked with the combination of the second-generation APRI enzalutamide than the first-generation agent bicalutamide, a result consistent with known resistance mechanisms to different ARPI therapy. Further, the FT-peptide/enzalutamide combination drove tumor regression whereas enzalutamide monotherapy only slowed growth, even in the hormone-sensitive xenograft. The FT-002a-enzalutamide combination was more effective than FT-005 in reducing tumor mass and volume and modulating FTH1 and TFRC expression. The reversal by the peptides of this oncogenic expression pattern points to a reduction in the tumor free iron via increased iron storage in ferritin and a reduction in iron influx via the transferrin receptor. Peptide-mediated modulation of tumor iron metabolism may therefore offer a novel means to enhance ARPI efficacy and delay resistance in advanced prostate cancer.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2503417"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143954609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2025-12-01Epub Date: 2025-05-04DOI: 10.1080/15384047.2025.2500104
Yun Lv, Yue Li, Jie Zhou, Xin Liu, Dandan Wang, Dongmei Wang, Dandan Tong, Shuhuai Wang, Hanxiang An, Xinmei Kang
{"title":"Exosomal miR-122-5p for regulation of secretory functions of fibroblasts and promotion of breast cancer metastasis by targeting MKP-2: an experimental study.","authors":"Yun Lv, Yue Li, Jie Zhou, Xin Liu, Dandan Wang, Dongmei Wang, Dandan Tong, Shuhuai Wang, Hanxiang An, Xinmei Kang","doi":"10.1080/15384047.2025.2500104","DOIUrl":"https://doi.org/10.1080/15384047.2025.2500104","url":null,"abstract":"<p><p>Tumor metastasis is a major obstacle for the effective treatment of breast cancer. Some studies showed that exosomes could promote tumor distant metastasis by establishing pre-metastasis niches (PMN). MicroRNAs (miRNAs) in exosomes play a critical role in tumor development and invasion. We aimed to investigate the effects of exosomal miRNAs derived from breast cancer cells on metastasis. MiRNA sequencing and RT-PCR approach were used to screen potential exosomal miRNAs. We compared the levels of serum exosomal miRNAs from breast cancer patients and those from MCF10A/MCF7/MDA-MB-231 cells. We found that differential exosomal miRNAs screened from patients with metastasis have higher expression levels in exosomes secreted by MDA-MB-231 cells. Using miRNA mimics or inhibitors, exosomal miR-122-5p was found to enhance the secretion levels of chemokine MCP-1 and SDF-1 from WI-38 lung fibroblast cells. In vitro luciferase assay and western blot confirmed the targeting of 3'-untranslated region of MKP-2 and suppression of MKP-2 expression by miR-122-5p in WI-38 cells. Treatment of xenograft mice with exosomal miR-122-5p increased the levels of MCP-1 and SDF-1 in serum, and promoted lung metastasis of breast cancer. In conclusion, we identified exosomal miR-122-5p from breast cancer cells that could promote the chemokine secretion of lung fibroblasts, which might facilitate the chemotaxis and colonization of breast cancer cells in lung tissue.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2500104"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer Biology & TherapyPub Date : 2025-12-01Epub Date: 2025-03-11DOI: 10.1080/15384047.2025.2475604
Lin Zhong, Jianfeng Zhu, Jie Chen, Xuchu Jin, Liangquan Liu, Shufeng Ji, Jing Luo, Hong Wang
{"title":"MGAT4EP promotes tumor progression and serves as a prognostic marker for breast cancer.","authors":"Lin Zhong, Jianfeng Zhu, Jie Chen, Xuchu Jin, Liangquan Liu, Shufeng Ji, Jing Luo, Hong Wang","doi":"10.1080/15384047.2025.2475604","DOIUrl":"10.1080/15384047.2025.2475604","url":null,"abstract":"<p><p>Breast cancer remains a global health challenge with varied prognoses despite treatment advancements. Therefore, this study explores the pseudogene MGAT4EP as a potential biomarker and therapeutic target in breast cancer. Using TCGA data and bioinformatics, MGAT4EP was identified as significantly overexpressed in breast cancer tissues and associated with poor prognosis. Multivariate Cox regression confirmed MGAT4EP as important prognostic factor. A clinical prediction model based on MGAT4EP expression showed high accuracy for 1-, 3-, and 5-year survival rates and was translated into a nomogram for clinical application. Functional studies revealed that silencing MGAT4EP <i>via</i> siRNA promoted apoptosis, inhibited migration and invasion in breast cancer cells. RNA-seq, GSEA, and GO analyses linked MGAT4EP to apoptosis and focal adhesion pathways. Notably, knock down of MGAT4EP significantly suppressed tumor growth and metastasis in xenograft and lung metastasis models. Taken together, these findings establish MGAT4EP as an attractive target for metastatic breast cancer and provide a potential a promising therapeutic target for breast cancer treatment.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2475604"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}