Inhibitory effect of Endostar on HIF-1 with upregulation of MHC-I in lung cancer cells.

IF 4.6 4区 医学 Q2 ONCOLOGY
Cancer Biology & Therapy Pub Date : 2025-12-01 Epub Date: 2025-05-20 DOI:10.1080/15384047.2025.2508535
Ming-Zhen Zhao, Hong-Fei Zheng, Jing-Na Wang, Yan-Min Zhang, Hai-Jing Wang, Zhi-Wei Zhao
{"title":"Inhibitory effect of Endostar on HIF-1 with upregulation of MHC-I in lung cancer cells.","authors":"Ming-Zhen Zhao, Hong-Fei Zheng, Jing-Na Wang, Yan-Min Zhang, Hai-Jing Wang, Zhi-Wei Zhao","doi":"10.1080/15384047.2025.2508535","DOIUrl":null,"url":null,"abstract":"<p><p>Endostar is a human recombinant endostatin which is an attractive anti-angiogenesis protein. Because inefficient antigen presenting MHC class I expression (which can be downregulated by HIF-1) is an important strategy for cancer immune evasion, besides its anti-angiogenesis effect, it remains unclear whether Endostar has an inhibitory effect on HIF-1 expression by upregulating MHC class I expression in cancer cells to facilitate immunotherapies, including PD-1/PD-L1 inhibitors. In this study, A549 and NCI-H1299 lung cancer cells were treated with Endostar (6.25 μg/ml, 12.5 μg/ml, and 25 μg/ml, respectively). HIF-1 expression was detected by Immunocytochemistry and Western blot. Proteins of the MHC class I α-heavy chain and β2 m light chain, STAT3 and pSTAT3 were detected by Western blot. The mRNAs of MHC class I α-heavy chain and β2 m light chain were detected by RT-qPCR. It was shown that decreased expression of HIF-1 and promotion of β2-microglobulin were observed after Endostar treatment. In addition, elevated levels of MHC class I α-heavy chain mRNA and protein, as well as downregulation of STAT3 and pSTAT3, were also observed following Endostar treatment. Endostar inhibited HIF-1 expression in A549 and NCI-H1299 lung cancer cells, upregulated expression of MHC class I α-heavy chain and β2 m light chain, with the upregulation of STAT3 and pSTAT3, suggesting involvement of STAT3 pathway. It is important because only in combination with MHC class I on target cells can tumor antigenic peptides be recognized by CD8+ CTLs which destroy target cells. However, MHC class I is frequently deficient in cancer cells.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2508535"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2508535","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endostar is a human recombinant endostatin which is an attractive anti-angiogenesis protein. Because inefficient antigen presenting MHC class I expression (which can be downregulated by HIF-1) is an important strategy for cancer immune evasion, besides its anti-angiogenesis effect, it remains unclear whether Endostar has an inhibitory effect on HIF-1 expression by upregulating MHC class I expression in cancer cells to facilitate immunotherapies, including PD-1/PD-L1 inhibitors. In this study, A549 and NCI-H1299 lung cancer cells were treated with Endostar (6.25 μg/ml, 12.5 μg/ml, and 25 μg/ml, respectively). HIF-1 expression was detected by Immunocytochemistry and Western blot. Proteins of the MHC class I α-heavy chain and β2 m light chain, STAT3 and pSTAT3 were detected by Western blot. The mRNAs of MHC class I α-heavy chain and β2 m light chain were detected by RT-qPCR. It was shown that decreased expression of HIF-1 and promotion of β2-microglobulin were observed after Endostar treatment. In addition, elevated levels of MHC class I α-heavy chain mRNA and protein, as well as downregulation of STAT3 and pSTAT3, were also observed following Endostar treatment. Endostar inhibited HIF-1 expression in A549 and NCI-H1299 lung cancer cells, upregulated expression of MHC class I α-heavy chain and β2 m light chain, with the upregulation of STAT3 and pSTAT3, suggesting involvement of STAT3 pathway. It is important because only in combination with MHC class I on target cells can tumor antigenic peptides be recognized by CD8+ CTLs which destroy target cells. However, MHC class I is frequently deficient in cancer cells.

恩度通过上调肺癌细胞mhc -1抑制HIF-1的作用。
Endostar是一种重组人血管内皮抑制素,是一种有吸引力的抗血管生成蛋白。由于低效抗原呈递MHC I类表达(可被HIF-1下调)是癌症免疫逃避的重要策略,除了其抗血管生成作用外,尚不清楚恩度是否通过上调癌细胞中MHC I类表达来抑制HIF-1的表达,从而促进包括PD-1/PD-L1抑制剂在内的免疫治疗。本研究采用恩度(6.25 μg/ml、12.5 μg/ml和25 μg/ml)治疗A549和NCI-H1299肺癌细胞。免疫细胞化学和Western blot检测HIF-1的表达。Western blot检测MHCⅰ类α-重链、β2 m轻链、STAT3、pSTAT3蛋白。RT-qPCR检测MHCⅰ类α-重链和β2 m轻链mrna。结果表明,恩度治疗后HIF-1表达降低,β2微球蛋白表达增强。此外,在恩度治疗后,MHC I类α-重链mRNA和蛋白水平升高,STAT3和pSTAT3下调。恩度抑制A549和NCI-H1299肺癌细胞中HIF-1的表达,上调MHC I类α-重链和β2 m轻链的表达,上调STAT3和pSTAT3,提示参与STAT3通路。这很重要,因为只有与靶细胞上的MHC I类结合,肿瘤抗原肽才能被CD8+ ctl识别,从而破坏靶细胞。然而,MHC I类在癌细胞中经常缺乏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信