The Cdk inhibitor dinaciclib as a promising anti-tumorigenic agent in biliary tract cancer.

IF 4.4 4区 医学 Q2 ONCOLOGY
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-12-12 DOI:10.1080/15384047.2024.2439057
Celina Ablinger, Daniel Neureiter, Theresa Mähr, Christian Mayr, Tobias Kiesslich, Nicole Maeding, Irina Valenta, Maximilian Ardelt, Fabian Wilhelm, Elen Neureiter, Markus Ritter, Johanna Pachmayr, Petra Huber-Cantonati
{"title":"The Cdk inhibitor dinaciclib as a promising anti-tumorigenic agent in biliary tract cancer.","authors":"Celina Ablinger, Daniel Neureiter, Theresa Mähr, Christian Mayr, Tobias Kiesslich, Nicole Maeding, Irina Valenta, Maximilian Ardelt, Fabian Wilhelm, Elen Neureiter, Markus Ritter, Johanna Pachmayr, Petra Huber-Cantonati","doi":"10.1080/15384047.2024.2439057","DOIUrl":null,"url":null,"abstract":"<p><p>Biliary tract cancer (BTC) is a rare malignancy with rising incidence. The therapeutic options are limited and the overall survival remains poor. Cyclin-dependent kinases, drivers of cell cycle and transcription have numerous biological functions and are known to be dysregulated in numerous tumor entities. Dinaciclib is a selective Cdk1/2/5/9 inhibitor with anti-tumor activity. In the present study, the efficacy of dinaciclib was tested on a comprehensive BTC cell-line model. The results indicate a heterogeneous expression pattern of Cdk1/2/5/9, as well as various differentiation tumor markers in BTC cells. We demonstrated that dinaciclib reduces cell viability, ATP levels, and proliferation rates. Moreover, dinaciclib induces apoptosis via increased caspase 3/7 activity and reduced expression levels of the anti-apoptotic protein Mcl-1 in a concentration- and cell line -dependent manner. 3D cell culture confirms the cytotoxic impact of dinaciclib under more physiologic tumor conditions. Additionally, dinaciclib affects different cell growth regulators like EGFR and STAT3 on gene and protein level, thus decreasing tumor growth. In summary, our study indicates that dinaciclib acts as a promising anti-tumorigenic agent in 2D and 3D <i>in vitro</i> BTC models and thus encourages further investigation.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2439057"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2439057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biliary tract cancer (BTC) is a rare malignancy with rising incidence. The therapeutic options are limited and the overall survival remains poor. Cyclin-dependent kinases, drivers of cell cycle and transcription have numerous biological functions and are known to be dysregulated in numerous tumor entities. Dinaciclib is a selective Cdk1/2/5/9 inhibitor with anti-tumor activity. In the present study, the efficacy of dinaciclib was tested on a comprehensive BTC cell-line model. The results indicate a heterogeneous expression pattern of Cdk1/2/5/9, as well as various differentiation tumor markers in BTC cells. We demonstrated that dinaciclib reduces cell viability, ATP levels, and proliferation rates. Moreover, dinaciclib induces apoptosis via increased caspase 3/7 activity and reduced expression levels of the anti-apoptotic protein Mcl-1 in a concentration- and cell line -dependent manner. 3D cell culture confirms the cytotoxic impact of dinaciclib under more physiologic tumor conditions. Additionally, dinaciclib affects different cell growth regulators like EGFR and STAT3 on gene and protein level, thus decreasing tumor growth. In summary, our study indicates that dinaciclib acts as a promising anti-tumorigenic agent in 2D and 3D in vitro BTC models and thus encourages further investigation.

胆道癌(BTC)是一种罕见的恶性肿瘤,发病率呈上升趋势。治疗方案有限,总体生存率仍然很低。细胞周期蛋白依赖性激酶是细胞周期和转录的驱动因子,具有多种生物学功能,已知在多种肿瘤实体中存在失调。Dinaciclib是一种具有抗肿瘤活性的选择性Cdk1/2/5/9抑制剂。本研究在一个综合性 BTC 细胞系模型上测试了地那西利布的疗效。结果表明,Cdk1/2/5/9以及各种分化肿瘤标志物在BTC细胞中有不同的表达模式。我们证实,地那西利布能降低细胞活力、ATP水平和增殖率。此外,dinaciclib 还能通过增加 caspase 3/7 活性和降低抗凋亡蛋白 Mcl-1 的表达水平来诱导细胞凋亡,其作用与浓度和细胞系有关。三维细胞培养证实了地那西利在更符合肿瘤生理的条件下产生的细胞毒性影响。此外,dinaciclib 还在基因和蛋白水平上影响表皮生长因子受体(EGFR)和 STAT3 等不同的细胞生长调节因子,从而降低肿瘤生长。总之,我们的研究表明,在二维和三维体外 BTC 模型中,dinaciclib 是一种很有前景的抗肿瘤药物,因此值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信