Celina Ablinger, Daniel Neureiter, Theresa Mähr, Christian Mayr, Tobias Kiesslich, Nicole Maeding, Irina Valenta, Maximilian Ardelt, Fabian Wilhelm, Elen Neureiter, Markus Ritter, Johanna Pachmayr, Petra Huber-Cantonati
{"title":"The Cdk inhibitor dinaciclib as a promising anti-tumorigenic agent in biliary tract cancer.","authors":"Celina Ablinger, Daniel Neureiter, Theresa Mähr, Christian Mayr, Tobias Kiesslich, Nicole Maeding, Irina Valenta, Maximilian Ardelt, Fabian Wilhelm, Elen Neureiter, Markus Ritter, Johanna Pachmayr, Petra Huber-Cantonati","doi":"10.1080/15384047.2024.2439057","DOIUrl":null,"url":null,"abstract":"<p><p>Biliary tract cancer (BTC) is a rare malignancy with rising incidence. The therapeutic options are limited and the overall survival remains poor. Cyclin-dependent kinases, drivers of cell cycle and transcription have numerous biological functions and are known to be dysregulated in numerous tumor entities. Dinaciclib is a selective Cdk1/2/5/9 inhibitor with anti-tumor activity. In the present study, the efficacy of dinaciclib was tested on a comprehensive BTC cell-line model. The results indicate a heterogeneous expression pattern of Cdk1/2/5/9, as well as various differentiation tumor markers in BTC cells. We demonstrated that dinaciclib reduces cell viability, ATP levels, and proliferation rates. Moreover, dinaciclib induces apoptosis via increased caspase 3/7 activity and reduced expression levels of the anti-apoptotic protein Mcl-1 in a concentration- and cell line -dependent manner. 3D cell culture confirms the cytotoxic impact of dinaciclib under more physiologic tumor conditions. Additionally, dinaciclib affects different cell growth regulators like EGFR and STAT3 on gene and protein level, thus decreasing tumor growth. In summary, our study indicates that dinaciclib acts as a promising anti-tumorigenic agent in 2D and 3D <i>in vitro</i> BTC models and thus encourages further investigation.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2439057"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2439057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biliary tract cancer (BTC) is a rare malignancy with rising incidence. The therapeutic options are limited and the overall survival remains poor. Cyclin-dependent kinases, drivers of cell cycle and transcription have numerous biological functions and are known to be dysregulated in numerous tumor entities. Dinaciclib is a selective Cdk1/2/5/9 inhibitor with anti-tumor activity. In the present study, the efficacy of dinaciclib was tested on a comprehensive BTC cell-line model. The results indicate a heterogeneous expression pattern of Cdk1/2/5/9, as well as various differentiation tumor markers in BTC cells. We demonstrated that dinaciclib reduces cell viability, ATP levels, and proliferation rates. Moreover, dinaciclib induces apoptosis via increased caspase 3/7 activity and reduced expression levels of the anti-apoptotic protein Mcl-1 in a concentration- and cell line -dependent manner. 3D cell culture confirms the cytotoxic impact of dinaciclib under more physiologic tumor conditions. Additionally, dinaciclib affects different cell growth regulators like EGFR and STAT3 on gene and protein level, thus decreasing tumor growth. In summary, our study indicates that dinaciclib acts as a promising anti-tumorigenic agent in 2D and 3D in vitro BTC models and thus encourages further investigation.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.