Cancer Biology & Therapy最新文献

筛选
英文 中文
Sirtuin1 (sirt1) regulates the glycolysis pathway and decreases cisplatin chemotherapeutic sensitivity to esophageal squamous cell carcinoma. Sirtuin1(sirt1)调节糖酵解途径并降低顺铂化疗对食管鳞状细胞癌的敏感性。
IF 4.4 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-06-12 DOI: 10.1080/15384047.2024.2365449
Xuewen Yang, Shisen Li, Chunsheng Xu, Shushang Liu, Xiang Zhang, Bo Lian, Mengbin Li
{"title":"Sirtuin1 (sirt1) regulates the glycolysis pathway and decreases cisplatin chemotherapeutic sensitivity to esophageal squamous cell carcinoma.","authors":"Xuewen Yang, Shisen Li, Chunsheng Xu, Shushang Liu, Xiang Zhang, Bo Lian, Mengbin Li","doi":"10.1080/15384047.2024.2365449","DOIUrl":"10.1080/15384047.2024.2365449","url":null,"abstract":"<p><p>We aimed to evaluate the influence of sirtuin1 (sirt1) on the ESCC chemotherapeutic sensitivity to cisplatin. We used ESCC cell ablation sirt1 for establishing a xenograft mouse tumor model. The tumor volume was then detected. sirt1 was over-expressed significantly in ESCC patients and cells. Moreover, sirt1 knockdown raised ESCC sensitivity to cisplatin. Besides, glycolysis was associated with ESCC cell chemotherapy resistance to cisplatin. Furthermore, sirt1 increased ESCC cells' cisplatin chemosensitivity through HK2. Sirt1 enhanced <i>in vivo</i> ESCC chemosensitivity to cisplatin. Overall, these findings suggested that sirt1 knockdown regulated the glycolysis pathway and raised the ESCC chemotherapeutic sensitivity.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2365449"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-135b-5p promotes cetuximab resistance in colorectal cancer by regulating FOXN3. MiR-135b-5p 通过调控 FOXN3 促进结直肠癌对西妥昔单抗的耐药性
IF 4.4 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-07-05 DOI: 10.1080/15384047.2024.2373497
Chun Peng, Xiaoqing Li, Yuhui Yao, Yu Nie, Lingyao Fan, Chuandong Zhu
{"title":"MiR-135b-5p promotes cetuximab resistance in colorectal cancer by regulating FOXN3.","authors":"Chun Peng, Xiaoqing Li, Yuhui Yao, Yu Nie, Lingyao Fan, Chuandong Zhu","doi":"10.1080/15384047.2024.2373497","DOIUrl":"10.1080/15384047.2024.2373497","url":null,"abstract":"<p><p>Despite advances in targeted therapies, primary and acquired resistance make the treatment of colorectal cancer (CRC) a pressing issue to be resolved. According to reports, the development of CRC is linked to miRNA dysregulation. Multiple studies have demonstrated that miR-135b-5p has an aberrant expression level between CRC tissues and adjacent tissues. However, it is unclear whether there is a correlation between miR-135b-5p and cetuximab (CTx) resistance in CRC. Use the GEO database to measure miR-135b-5p expression in CRC. Additionally, RT-qPCR was applied to ascertain the production level of miR-135b-5p in three human CRC cells and NCM460 cells. The capacity of cells to migrate and invade was examined utilizing the wound-healing and transwell assays, while the CCK-8 assay served for evaluating cell viability, as well as colony formation assays for proliferation. The expected target protein of miR-135b-5p in CRC cell cetuximab resistance has been investigated using western blot. Suppression of miR-135b-5p could increase the CTx sensitivity of CTx-resistant CRC cells, as manifested by the attenuation of proliferation, migration, and invasion ability. Mechanistic studies revealed miR-135b-5p regulates the epithelial-to-mesenchymal transition (EMT) process and Wnt/β-catenin signaling pathway through downgulating FOXN3. In short, knockdowning miR-135b-5p could increase FOXN3 expression in CRC cells, promote the EMT process, and simultaneously activate the Wnt/β-catenin signaling pathway to elevate CTx resistance in CRC cells.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2373497"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prognostic value of pretreatment procalcitonin and neutrophil-lymphocyte ratio in extensive-stage small-cell lung cancer. 广泛期小细胞肺癌治疗前降钙素原和中性粒细胞-淋巴细胞比值的预后价值
IF 3.6 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-03-27 DOI: 10.1080/15384047.2024.2331273
Dongfang Chen, Jianlin Xu, Yizhuo Zhao, Baohui Han, Runbo Zhong
{"title":"Prognostic value of pretreatment procalcitonin and neutrophil-lymphocyte ratio in extensive-stage small-cell lung cancer.","authors":"Dongfang Chen, Jianlin Xu, Yizhuo Zhao, Baohui Han, Runbo Zhong","doi":"10.1080/15384047.2024.2331273","DOIUrl":"10.1080/15384047.2024.2331273","url":null,"abstract":"<p><strong>Background: </strong>To investigate the influence of pretreatment neutrophil-to-lymphocyte ratio (NLR) and procalcitonin (PCT) on progression-free survival (PFS) in extensive-stage small-cell lung cancer (SCLC) patients.</p><p><strong>Method: </strong>A total of 100 extensive-stage SCLC patients were enrolled in our study. Patients were stratified according to the median values of pretreatment NLR and PCT levels: low NLR group (NLR ≤3.17), high NLR group (NLR>3.17), low PCT group (PCT ≤0.06; ng/ml), high PCT group (PCT>0.06; ng/ml). The Kaplan-Meier method and multivariable Cox regression model were used to reveal the prognostic effects of pretreatment NLR and PCT on PFS.</p><p><strong>Results: </strong>The median PFS of the total extensive-stage SCLC patients was 6.0 months. The median PFS of low pretreatment NLR group (NLR ≤3.17) was not significantly different from that of high pretreatment NLR group (6.2 months vs 5.8 months; <i>p</i> = .675). Patients with low pretreatment PCT (PCT ≤0.06; ng/ml) had significantly better PFS than patients with high pretreatment PCT (PCT>0.06; ng/ml) (6.9 months vs 5.7 months; <i>p</i> = .043). With the multivariable Cox regression analysis, the response to first-line chemotherapy (<i>p</i> ≤ .001) and pretreatment PCT (HR = 0.516; 95%CI 0.326-0.817; <i>p</i> = .005) were identified as independent factors associated with PFS.</p><p><strong>Conclusion: </strong>Pretreatment PCT is an independent factor associated with PFS in extensive-stage SCLC patients treated with first-line chemotherapy, but pretreatment NLR reflects no significant prognostic value in our study.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2331273"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cells and a transgenic model of endometrial cancer. 亚油酸在子宫内膜癌细胞和子宫内膜癌转基因模型中具有抗增殖和抗侵袭活性。
IF 3.6 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-03-11 DOI: 10.1080/15384047.2024.2325130
Jianqing Qiu, Ziyi Zhao, Hongyan Suo, Sarah E Paraghamian, Gabrielle M Hawkins, Wenchuan Sun, Xin Zhang, Tianran Hao, Beor Deng, Xiaochang Shen, Chunxiao Zhou, Victoria Bae-Jump
{"title":"Linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cells and a transgenic model of endometrial cancer.","authors":"Jianqing Qiu, Ziyi Zhao, Hongyan Suo, Sarah E Paraghamian, Gabrielle M Hawkins, Wenchuan Sun, Xin Zhang, Tianran Hao, Beor Deng, Xiaochang Shen, Chunxiao Zhou, Victoria Bae-Jump","doi":"10.1080/15384047.2024.2325130","DOIUrl":"10.1080/15384047.2024.2325130","url":null,"abstract":"<p><p>Emerging evidence has provided considerable insights into the integral function of reprogramming fatty acid metabolism in the carcinogenesis and progression of endometrial cancer. Linoleic acid, an essential fatty acid with the highest consumption in the Western diet regimen, has shown pro-tumorigenic or anti-tumorigenic effects on tumor cell growth and invasion in multiple types of cancer. However, the biological role of linoleic acid in endometrial cancer remains unclear. In the present study, we aimed to investigate the functional impact of linoleic acid on cell proliferation, invasion, and tumor growth in endometrial cancer cells and in a transgenic mouse model of endometrial cancer. The results showed that Linoleic acid significantly inhibited the proliferation of endometrial cancer cells in a dose-dependent manner. The treatment of HEC-1A and KLE cells with linoleic acid effectively increased intracellular reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, caused cell cycle G1 arrest, and induced intrinsic and extrinsic apoptosis pathways. The anti-invasive ability of linoleic acid was found to be associated with the epithelial-mesenchymal transition process in both cell lines, including the decreased expression of N-cadherin, snail, and vimentin. Furthermore, treatment of <i>Lkb1</i><sup><i>fl/fl</i></sup><i>p53</i><sup><i>fl/fl</i></sup> transgenic mice with linoleic acid for four weeks significantly reduced the growth of endometrial tumors and decreased the expression of VEGF, vimentin, Ki67, and cyclin D1 in tumor tissues. Our findings demonstrate that linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cell lines and the <i>Lkb1</i><sup><i>fl/fl</i></sup><i>p53</i><sup><i>fl/fl</i></sup> mouse model of endometrial cancer, thus providing a pre-clinical basis for future dietary interventions with linoleic acid in endometrial cancer.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2325130"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between the apoptotic effect of Cabazitaxel and its pro-oxidant efficacy on the redox adaptation mechanisms in prostate cancer cells with different resistance phenotypes. 卡巴他赛的凋亡效应及其促氧化作用与不同抗性表型的前列腺癌细胞的氧化还原适应机制之间的联系
IF 3.6 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-03-14 DOI: 10.1080/15384047.2024.2329368
Isil Ezgi Eryilmaz, Unal Egeli, Gulsah Cecener
{"title":"Association between the apoptotic effect of Cabazitaxel and its pro-oxidant efficacy on the redox adaptation mechanisms in prostate cancer cells with different resistance phenotypes.","authors":"Isil Ezgi Eryilmaz, Unal Egeli, Gulsah Cecener","doi":"10.1080/15384047.2024.2329368","DOIUrl":"10.1080/15384047.2024.2329368","url":null,"abstract":"<p><p>Redox adaptation causes poor prognosis by adapting cancer cells to excessive oxidative stress. Previously, we introduced an oxidative stress-resistant metastatic prostate cancer (mPC) model (LNCaP-HPR) that redox adaptation reduced the effect of Cabazitaxel (Cab), the last taxane-derivative for metastatic castration-resistant PC (mCRPC). Whereas, we investigated for the first time whether there is an association between the altered apoptotic effect and pro-oxidant efficacy of Cab on the redox adaptation in PC cells with different phenotypes, including LNCaP mPC, LNCaP-HPR, C4-2 mCRPC, and RWPE-1 cells. Cab was shown pro-oxidant efficacy proportionally with the apoptotic effect, more prominent in the less aggressive LNCaP cells, by increasing the endogenous ROS, mitochondrial damage, and inhibiting nuclear ROS scavengers, p-Nrf2 and HIF-1α. However, the pro-oxidant and apoptotic effect was lower in the LNCaP-HPR and C4-2 cells, indicating that the drug sensitivity of the cells adapted to survive with more ROS was reduced via altered regulation of redox adaptation. Additionally, unlike LNCaP, Cab caused an increase in the p-NF-κB activation, suggesting that the p-NF-κB might accompany maintaining survival with the increased ROS in the aggressive PC cells. Moreover, the cytotoxic and apoptotic effects of Cab were less on RWPE-1 cells compared to LNCaP but were closer to those on the more aggressive LNCaP-HPR and C4-2 cells, except for the changing pro-oxidant effect of Cab. Consequently, this study indicates the variable pro-oxidant effects of Cab on redox-sensitive proteins, which could be a target for improving Cab's apoptotic effect more in aggressive PC cells.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2329368"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclophilin A: promising target in cancer therapy. 环嗜蛋白 A:有望成为癌症治疗的靶点。
IF 5.4 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-11-08 DOI: 10.1080/15384047.2024.2425127
Shujuan Jin, Mengjiao Zhang, Xiaoting Qiao
{"title":"Cyclophilin A: promising target in cancer therapy.","authors":"Shujuan Jin, Mengjiao Zhang, Xiaoting Qiao","doi":"10.1080/15384047.2024.2425127","DOIUrl":"10.1080/15384047.2024.2425127","url":null,"abstract":"<p><p>Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its <i>peptidyl-prolyl cis-trans isomerase</i> (<i>PPIase</i>) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2425127"},"PeriodicalIF":5.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. WYC-209 通过 RARα 下调 WNT4,从而抑制 GC 的恶性发展。
IF 3.6 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-01-04 DOI: 10.1080/15384047.2023.2299288
Zhenyuan Qian, Wenfa Lin, Xufan Cai, Jianzhang Wu, Kun Ke, Zaiyuan Ye, Fang Wu
{"title":"WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα.","authors":"Zhenyuan Qian, Wenfa Lin, Xufan Cai, Jianzhang Wu, Kun Ke, Zaiyuan Ye, Fang Wu","doi":"10.1080/15384047.2023.2299288","DOIUrl":"10.1080/15384047.2023.2299288","url":null,"abstract":"<p><p>Gastric cancer (GC) has been a major health burden all over the world but there are fewer promising chemotherapeutic drugs due to its multidrug resistance. It has been reported that WYC-209 suppresses the growth and metastasis of tumor-repopulating cells but the effect on GC was not explored. MTT, colony formation, and transwell assays were performed to examine the effects of WYC-209 on the proliferation, colony growth, and mobility of GC cells. Western blotting and qRT-PCR were used to detect the expression of proteins and mRNA. RNA-seq and enrichment analyses were conducted for the differentially expressed genes and enriched biological processes and pathways. The rescue experiments were carried out for further validation. Besides, we constructed xenograft model to confirm the effect of WYC-209 in vivo. The dual-luciferase reporter and Chromatin immunoprecipitation were implemented to confirm the underlying mechanism. WYC-209 exerted excellent anti-cancer effects both in vitro and in vivo. Based on RNA-seq and enrichment analyses, we found that Wnt family member 4 (WNT4) was significantly down-regulated. More importantly, WNT4 overexpression breached the inhibitory effect of WYC-209 on GC progression. Mechanically, WYC-209 significantly promoted the binding between retinoic acid receptor α (RARα) and WNT4 promoter. WYC-209 exerts anti-tumor effects in GC by down-regulating the expression of WNT4 via RARα.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2299288"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic silencing ZSCAN23 promotes pancreatic cancer growth by activating Wnt signaling. 表观遗传沉默 ZSCAN23 通过激活 Wnt 信号促进胰腺癌生长
IF 3.6 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-01-16 DOI: 10.1080/15384047.2024.2302924
Qian Du, Meiying Zhang, Aiai Gao, Tao He, Mingzhou Guo
{"title":"Epigenetic silencing <i>ZSCAN23</i> promotes pancreatic cancer growth by activating Wnt signaling.","authors":"Qian Du, Meiying Zhang, Aiai Gao, Tao He, Mingzhou Guo","doi":"10.1080/15384047.2024.2302924","DOIUrl":"10.1080/15384047.2024.2302924","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor. Zinc finger and SCAN domain-containing protein 23 (<i>ZSCAN23</i>) is a new member of the SCAN domain family. The expression regulation and biological function remain to be elucidated. In this study, we explored the epigenetic regulation and the function of <i>ZSCAN23</i> in PDAC. <i>ZSCAN23</i> was methylated in 60.21% (171/284) of PDAC and its expression was regulated by promoter region methylation. The expression of <i>ZSCAN23</i> inhibited cell proliferation, colony formation, migration, invasion, and induced apoptosis and G1/S phase arrest. <i>ZSCAN23</i> suppressed Panc10.05 cell xenograft growth in mice. Mechanistically, <i>ZSCAN23</i> inhibited Wnt signaling by interacting with myosin heavy chain 9 (MYH9) in pancreatic cancer cells. <i>ZSCAN23</i> is frequently methylated in PDAC and may serve as a detective marker. <i>ZSCAN23</i> suppresses PDAC cell growth both <i>in vitro</i> and <i>in vivo</i>.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2302924"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
M6A modification regulates tumor suppressor DIRAS1 expression in cervical cancer cells. M6A 修饰调节宫颈癌细胞中肿瘤抑制因子 DIRAS1 的表达。
IF 3.6 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-02-19 DOI: 10.1080/15384047.2024.2306674
Yu-Yan Wang, Lian-Hua Ye, An-Qi Zhao, Wei-Ran Gao, Ning Dai, Yu Yin, Xin Zhang
{"title":"M6A modification regulates tumor suppressor DIRAS1 expression in cervical cancer cells.","authors":"Yu-Yan Wang, Lian-Hua Ye, An-Qi Zhao, Wei-Ran Gao, Ning Dai, Yu Yin, Xin Zhang","doi":"10.1080/15384047.2024.2306674","DOIUrl":"10.1080/15384047.2024.2306674","url":null,"abstract":"<p><p>DIRAS family GTPase 1 (DIRAS1) has been reported as a potential tumor suppressor in other human cancer. However, its expression pattern and role in cervical cancer remain unknown. Knockdown of DIRAS1 significantly promoted the proliferation, growth, migration, and invasion of C33A and SiHa cells cultured <i>in vitro</i>. Overexpression of DIRAS1 significantly inhibited the viability and motility of C33A and SiHa cells. Compared with normal cervical tissues, DIRAS1 mRNA levels were significantly lower in cervical cancer tissues. DIRAS1 protein expression was also significantly reduced in cervical cancer tissues compared with para-cancerous tissues. In addition, DIRAS1 expression level in tumor tissues was significantly negatively correlated with the pathological grades of cervical cancer patients. DNA methylation inhibitor (5-Azacytidine) and histone deacetylation inhibitor (SAHA) resulted in a significant increase in DIRAS1 mRNA levels in C33A and SiHa cells, but did not affect DIRAS1 protein levels. FTO inhibitor (FB23-2) significantly down-regulated intracellular DIRAS1 mRNA levels, but significantly up-regulated DIRAS1 protein levels. Moreover, the down-regulation of METTL3 and METTL14 expression significantly inhibited DIRAS1 protein expression, whereas the down-regulation of FTO and ALKBH5 expression significantly increased DIRAS1 protein expression. In conclusion, DIRAS1 exerts a significant anti-oncogenic function and its expression is significantly downregulated in cervical cancer cells. The m6A modification may be a key mechanism to regulate DIRAS1 mRNA stability and protein translation efficiency in cervical cancer.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2306674"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between the IL1B-511 C>T polymorphism and the risk of hematologic malignancies: data from a meta-analysis. IL1B-511 C>T 多态性与血液系统恶性肿瘤风险之间的关系:一项荟萃分析的数据。
IF 4.4 4区 医学
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-07-22 DOI: 10.1080/15384047.2024.2382503
Fabíola Silva Alves-Hanna, Felipe Rodolfo Pereira Silva, Daniele Sá Pereira, Alessandro Luiz Araújo Bentes Leal, Fábio Magalhães-Gama, Allyson Guimarães Costa
{"title":"Association between the <i>IL1B-511 C>T</i> polymorphism and the risk of hematologic malignancies: data from a meta-analysis.","authors":"Fabíola Silva Alves-Hanna, Felipe Rodolfo Pereira Silva, Daniele Sá Pereira, Alessandro Luiz Araújo Bentes Leal, Fábio Magalhães-Gama, Allyson Guimarães Costa","doi":"10.1080/15384047.2024.2382503","DOIUrl":"10.1080/15384047.2024.2382503","url":null,"abstract":"<p><p>The relationship between the <i>IL1B-511C>T</i> (rs16944) polymorphism and the risk of developing hematologic malignancies remains controversial. Thus, we performed a meta-analysis to evaluate the association between <i>IL1B-511C>T</i> polymorphism and the risk of developing hematologic malignancies. A comprehensive search was conducted to identify all eligible studies on <i>IL1B-511C>T</i> polymorphism and hematologic malignancies. Twelve case-control studies, with 2,896 cases and 3,716 controls, were selected for the analysis. The overall data failed to indicate a significant association between <i>IL1B-511C>T</i> polymorphism and the risk of hematologic malignancies (OR:1.06, 95% Confidence Interval [CI]: 0.93-1.22). Moreover, non-significant associations were observed in a stratified analysis according to neoplasm type (multiple myeloma, Hodgkin's lymphoma, and non-Hodgkin's lymphoma), ethnicity (European and Asian), and Hardy-Weinberg equilibrium. In summary, our results suggest that there is no association between the <i>IL1B-511C>T</i> polymorphism and the risk of hematologic malignancies. As such, further large-scale studies are needed to confirm our findings.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2382503"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信