Cancer lettersPub Date : 2024-10-11DOI: 10.1016/j.canlet.2024.217290
Zhen-Kun Wang , Zhi-Wei Zhang , Zhong-Shi Lyu , Tong Xing , Mi Liang , Meng-Zhu Shen , Chen-Yuan Li , Xin-Yan Zhang , Dan-Dan Chen , Ya-Zhe Wang , Li-Juan Hu , Hao Jiang , Yu Wang , Qian Jiang , Xiao-Hui Zhang , Yuan Kong , Xiao-Jun Huang
{"title":"Inhibition of TGF-β signaling in bone marrow endothelial cells promotes hematopoietic recovery in acute myeloid leukemia patients","authors":"Zhen-Kun Wang , Zhi-Wei Zhang , Zhong-Shi Lyu , Tong Xing , Mi Liang , Meng-Zhu Shen , Chen-Yuan Li , Xin-Yan Zhang , Dan-Dan Chen , Ya-Zhe Wang , Li-Juan Hu , Hao Jiang , Yu Wang , Qian Jiang , Xiao-Hui Zhang , Yuan Kong , Xiao-Jun Huang","doi":"10.1016/j.canlet.2024.217290","DOIUrl":"10.1016/j.canlet.2024.217290","url":null,"abstract":"<div><div>Although it is an effective treatment for acute myeloid leukemia (AML), chemotherapy leads to myelosuppression and poor hematopoietic reconstruction. Hematopoiesis is regulated by bone marrow (BM) endothelial cells (ECs), and BM ECs are dysfunctional in acute leukemia patients with poor hematopoietic reconstitution after allogenic hematopoietic stem cell transplantation. Thus, it is crucial to explore the underlying mechanism of EC impairment and establish strategies for targeted therapy. TGF-β signaling was found to be upregulated in ECs from AML patients in complete remission (CR ECs) and led to CR EC damage. Administration of a TGF-β inhibitor rescued the dysfunction of ECs caused by TGF-β1 expression <em>in vitro</em>, especially their hematopoiesis-supporting ability. Moreover, inhibition of TGF-β expression repaired the BM EC damage triggered by chemotherapy in both AML patients <em>in vitro</em> and in an AML-CR murine model, and restored normal hematopoiesis without promoting AML progression. Mechanistically, our data reveal alterations in the transcriptomic pattern of damaged BM ECs, accompanied by the overexpression of downstream molecules TGF-βR1, pSmad2/3, and functional genes related to adhesion, angiogenesis suppression and pro-apoptosis. Collectively, our findings reveal for the first time that the activation of TGF-β signaling leads to BM EC dysfunction and poor hematopoietic reconstitution. Targeting TGF-β represents a potential therapeutic strategy to promote multilineage hematopoiesis, thereby benefiting more cancer patients who suffer from myelosuppression after chemotherapy.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217290"},"PeriodicalIF":9.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-10DOI: 10.1016/j.canlet.2024.217285
Julio M. Pimentel , Jun Ying Zhou , Gen Sheng Wu
{"title":"Autophagy and cancer therapy","authors":"Julio M. Pimentel , Jun Ying Zhou , Gen Sheng Wu","doi":"10.1016/j.canlet.2024.217285","DOIUrl":"10.1016/j.canlet.2024.217285","url":null,"abstract":"<div><div>Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217285"},"PeriodicalIF":9.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-09DOI: 10.1016/j.canlet.2024.217288
Ying Ning , Yu Chen , Tian Tian , Xinyan Gao , Xiaolan Liu , Jia Wang , Huijun Chu , Chenyang Zhao , Yufei Yang , Ke Lei , He Ren , Zhumei Cui
{"title":"S100A7 orchestrates neutrophil chemotaxis and drives neutrophil extracellular traps (NETs) formation to facilitate lymph node metastasis in cervical cancer patients","authors":"Ying Ning , Yu Chen , Tian Tian , Xinyan Gao , Xiaolan Liu , Jia Wang , Huijun Chu , Chenyang Zhao , Yufei Yang , Ke Lei , He Ren , Zhumei Cui","doi":"10.1016/j.canlet.2024.217288","DOIUrl":"10.1016/j.canlet.2024.217288","url":null,"abstract":"<div><div>Neutrophil extracellular traps (NETs) have been shown to promote the metastatic potential of many kinds of tumors. Our study aimed to investigate the role and mechanisms of NETs in lymph node metastasis (LNM) of cervical cancer (CCa), and evaluated the therapeutic value of targeting NETs in CCa. Immunohistochemistry demonstrated that neutrophil infiltration and NETs formation were increased in CCa patients with LNM, as well as confirming a positive correlation between S100A7 expression and neutrophil infiltration in CCa. NETs enhanced the migratory capability of CCa by activating the P38-MAPK/ERK/NFκB pathway through interaction with TLR2. Digesting NETs with deoxyribonuclease 1 (DNase 1) or inhibiting TLR2 with chloroquine eliminated the NETs-induced metastatic potential of CCa. Additionally, NETs promoted lymphangiogenesis and increased the permeability of lymphatic vessels, thus facilitating translymphatic movement of CCa. CCa-derived S100A7 exhibited a chemotactic effect on neutrophils and promoted NETs generation by elevating ROS levels rather than activating autophagy in neutrophils. The mouse model with footpad implantation illustrated that DNase 1 effectively reduced LNM in LPS-induced mice and in mice seeded with S100A7-overexpressing CCa cells. In conclusion, our study reveals a new tumor-promoting mechanism of S100A7, clarifies the crucial role and mechanism of NETs in LNM of CCa, and indicates that the NETs-targeted therapy emerges as a promising anti-metastasis therapy in CCa.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217288"},"PeriodicalIF":9.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-09DOI: 10.1016/j.canlet.2024.217287
Jin Zhang , Junrong Zhang , Ronggui Lin , Ping Hou , Lihong Zheng , Chenwei Jiang , Da Zhang , Heguang Huang , Tianhong Teng
{"title":"Pirfenidone antagonizes TGF-β1-mediated gabapentin resistance via reversal of desmoplasia and the ‘cold’ microenvironment in pancreatic cancer","authors":"Jin Zhang , Junrong Zhang , Ronggui Lin , Ping Hou , Lihong Zheng , Chenwei Jiang , Da Zhang , Heguang Huang , Tianhong Teng","doi":"10.1016/j.canlet.2024.217287","DOIUrl":"10.1016/j.canlet.2024.217287","url":null,"abstract":"<div><div>Owing to the desmoplastic stroma constituted by cancer-associated fibroblasts (CAFs), few immune cells infiltrate the pancreatic ductal adenocarcinoma (PDAC). Gabapentin can impede the production of ketoacids by CAFs to support cancer cells. However, in our study, we discovered a dose-dependent increase in transforming growth factor β1 (TGF-β1) levels in cancer cells in response to gabapentin. This reverse increase of TGF-β1 contributes to 'Gabapentin-resistance', leading to the antitumor effects on PDAC cell lines are negatively negotiated in the presence of pancreatic stellate cells. Pirfenidone synergistically inhibited the growth and apoptosis resistance of PDAC when combined with Gabapentin. In a mouse orthotopic PDAC model, Fe<sup>3+</sup>-mediated coordination nanodrugs, which contain gabapentin, pirfenidone and the natural polyphenol (EGCG), efficiently promoted the infiltration of naïve CD8<sup>+</sup> T cells (CD44<sup>low</sup>CD62L<sup>high</sup>) and the accumulation of inflammatory CAFs (α-SMA<sup>low</sup>IL-6<sup>high</sup>). This led to a nearly two-fold increase in survival compared to the control. Furthermore, we identified a new subpopulation as Hmox1<sup>high</sup>iCAFs following treatment with our nanodrugs. Hmox1<sup>high</sup>iCAFs overexpressed the Cxcl10 receptor (Sdc4) and facilitated functional CD8<sup>+</sup> T-cell infiltration through the Tnfsf9-Tnfrsf9 axis. Overall, our nanodrugs reshape the phenotype of CAFs and enhance functional CD8<sup>+</sup> T-cell infiltration into tumors, holding the potential to be a safe and promising therapy for PDAC.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217287"},"PeriodicalIF":9.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-09DOI: 10.1016/j.canlet.2024.217289
Ronghua Zhang , Junya Peng , Yalu Zhang , Kexin Zheng , Yang Chen , Lulu Liu , Tong Li , Jingkai Liu , Ying Li , Sen Yang , Mengyi Wang , Ming Cui , Xiang Zhang , Junyi Gao , Jorg Kleeff , Quan Liao , Qiaofei Liu
{"title":"Pancreatic cancer cell-derived migrasomes promote cancer progression by fostering an immunosuppressive tumor microenvironment","authors":"Ronghua Zhang , Junya Peng , Yalu Zhang , Kexin Zheng , Yang Chen , Lulu Liu , Tong Li , Jingkai Liu , Ying Li , Sen Yang , Mengyi Wang , Ming Cui , Xiang Zhang , Junyi Gao , Jorg Kleeff , Quan Liao , Qiaofei Liu","doi":"10.1016/j.canlet.2024.217289","DOIUrl":"10.1016/j.canlet.2024.217289","url":null,"abstract":"<div><div>Pancreatic cancer is distinguished by an immunosuppressive tumor microenvironment (TME) that facilitates cancer progression. The assembly of the TME involves numerous contributing factors. Migrasomes, recently identified as cellular organelles in migrating cells, play a pivotal role in intercellular signaling. However, research into their involvement in cancers remains nascent. Thus far, whether pancreatic cancer cells generate migrasomes and their potential role in TME formation remains unexplored. In this study, it was found that both murine and human pancreatic cancer cells could indeed generate migrasomes, termed pancreatic cancer cell-derived migrasomes (PCDMs), which actively promote cancer progression. Moreover, utilizing chemokine antibody arrays and quantitative mass spectrometry analysis, we observed significant differences between the chemokines, cytokines, and proteins present in PCDMs compared to their originating cell bodies. Notably, PCDMs exhibited an enrichment of immunosuppression-inducing factors. Furthermore, macrophages could directly uptake PCDMs, leading to the expression of high levels of M2-like markers and secretion of tumor-promoting factors. PCDM-induced macrophages played a pivotal role in inhibiting T cell proliferation and activation partially through ARG-1. In summary, this study provides compelling evidence that pancreatic cancer cells generate migrasomes, which play a crucial role in promoting tumor progression by contributing to an immunosuppressive TME. The exploration of migrasomes as a therapeutic target could pave the way for the development of tailored immunotherapies for pancreatic cancer.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217289"},"PeriodicalIF":9.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-05DOI: 10.1016/j.canlet.2024.217281
Daniel R. Plaugher , Avery R. Childress , Christian M. Gosser , Dave-Preston Esoe , Kassandra J. Naughton , Zhonglin Hao , Christine F. Brainson
{"title":"Therapeutic potential of tumor-infiltrating lymphocytes in non-small cell lung cancer","authors":"Daniel R. Plaugher , Avery R. Childress , Christian M. Gosser , Dave-Preston Esoe , Kassandra J. Naughton , Zhonglin Hao , Christine F. Brainson","doi":"10.1016/j.canlet.2024.217281","DOIUrl":"10.1016/j.canlet.2024.217281","url":null,"abstract":"<div><div>Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217281"},"PeriodicalIF":9.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-04DOI: 10.1016/j.canlet.2024.217282
Natisha R. Field , Kristie-Ann Dickson , Najah T. Nassif , Deborah J. Marsh
{"title":"SMARCA4 and SMARCA2 co-deficiency: An uncommon molecular signature defining a subset of rare, aggressive and undifferentiated malignancies associated with defective chromatin remodeling","authors":"Natisha R. Field , Kristie-Ann Dickson , Najah T. Nassif , Deborah J. Marsh","doi":"10.1016/j.canlet.2024.217282","DOIUrl":"10.1016/j.canlet.2024.217282","url":null,"abstract":"<div><div>Genetic mutations and epigenetic modifications affecting multiple cancer-related genes occur synergistically to drive tumorigenesis. Across a wide spectrum of cancers, pathogenic changes have been identified in members of the SWItch/Sucrose Non-Fermentable complex including its two catalytic subunits, SMARCA4 and SMARCA2. During cancer development, it is not uncommon to lose the function of either SMARCA4 or SMARCA2, however, loss of both together has been reported to be synthetic lethal and therefore unexpected. Co-deficiency of SMARCA4 and SMARCA2 occurs as a pathognomonic feature of the early-onset ovarian cancer Small-cell carcinoma of the ovary, hypercalcemic type. The loss of both catalytic subunits is also described in other rare undifferentiated neoplasms including Thoracic <em>SMARCA4</em>-deficient undifferentiated tumors, Malignant rhabdoid tumors and dedifferentiated or undifferentiated carcinomas, predominantly of lung, gastrointestinal, and endometrial origin. This review provides the first extensive characterization of cancers with concurrent SMARCA4 and SMARCA2 loss through the discussion of shared clinical and molecular features. Further, we discuss the mechanisms triggering the loss of catalytic activity, the cellular processes that are dysfunctional as a consequence, and finally, current therapeutic candidates which may selectively target these cancers.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217282"},"PeriodicalIF":9.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-02DOI: 10.1016/j.canlet.2024.217284
Dianhui Wei , Lili Yuan , Xiaoli Xu , Chengsi Wu , Yiwen Huang , Lili Zhang , Jilong Zhang , Tiantian Jing , Yizhen Liu , Boshi Wang
{"title":"Exploring epigenetic dynamics unveils a super-enhancer-mediated NDRG1-β-catenin axis in modulating gemcitabine resistance in pancreatic cancer","authors":"Dianhui Wei , Lili Yuan , Xiaoli Xu , Chengsi Wu , Yiwen Huang , Lili Zhang , Jilong Zhang , Tiantian Jing , Yizhen Liu , Boshi Wang","doi":"10.1016/j.canlet.2024.217284","DOIUrl":"10.1016/j.canlet.2024.217284","url":null,"abstract":"<div><div>Chemoresistance remains a formidable challenge in pancreatic ductal adenocarcinoma (PDAC) treatment, necessitating a comprehensive exploration of underlying molecular mechanisms. This work aims to investigate the dynamic epigenetic landscape during the development of gemcitabine resistance in PDAC, with a specific focus on super-enhancers and their regulatory effects. We employed well-established gemcitabine-resistant (Gem-R) PDAC cell lines to perform high-throughput analyses of the epigenome, enhancer connectome, and transcriptome. Our findings revealed notable alterations in the epigenetic landscape and genome architecture during the transition from gemcitabine-sensitive to -resistant PDAC cells. Remarkably, we observed substantial plasticity in the activation status of super-enhancers, with a considerable proportion of these cis-elements becoming deactivated in chemo-resistant cells. Furthermore, we pinpointed the NDRG1 super-enhancer (NDRG1-SE) as a crucial regulator in gemcitabine resistance among the loss-of-function super-enhancers. NDRG1-SE deactivation induced activation of WNT/β-catenin signaling, thereby conferring gemcitabine resistance. This work underscores a NDRG1 super-enhancer deactivation-driven β-catenin pathway activation as a crucial regulator in the acquisition of gemcitabine-resistance. These findings advance our understanding of PDAC biology and provide valuable insights for the development of effective therapeutic approaches against chemoresistance in this malignant disease.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217284"},"PeriodicalIF":9.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-10-02DOI: 10.1016/j.canlet.2024.217283
Xueqing Zhou , Yongguang Tao , Ying Shi
{"title":"Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy","authors":"Xueqing Zhou , Yongguang Tao , Ying Shi","doi":"10.1016/j.canlet.2024.217283","DOIUrl":"10.1016/j.canlet.2024.217283","url":null,"abstract":"<div><div>The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217283"},"PeriodicalIF":9.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer lettersPub Date : 2024-09-29DOI: 10.1016/j.canlet.2024.217276
Yang Liu , Wenbin Yan , Xiaogai Qi , Ye Zhang , Kai Wang , Yuan Qu , Xuesong Chen , Jianghu Zhang , Jingwei Luo , Ye-Xiong Li , Xiaodong Huang , Runye Wu , Jingbo Wang , Junlin Yi
{"title":"Significance of longitudinal Epstein–Barr virus DNA combined with multipoint tumor response for dynamic risk stratification and treatment adaptation in nasopharyngeal carcinoma","authors":"Yang Liu , Wenbin Yan , Xiaogai Qi , Ye Zhang , Kai Wang , Yuan Qu , Xuesong Chen , Jianghu Zhang , Jingwei Luo , Ye-Xiong Li , Xiaodong Huang , Runye Wu , Jingbo Wang , Junlin Yi","doi":"10.1016/j.canlet.2024.217276","DOIUrl":"10.1016/j.canlet.2024.217276","url":null,"abstract":"<div><div>Dynamic therapy response is strongly associated with cancer outcomes. This study aimed to evaluate the significance of longitudinal Epstein–Barr virus (EBV) DNA and radiological tumor regression in risk stratification and response-adaptive treatment in locally-advanced nasopharyngeal carcinoma (LA-NPC). In total, 1312 patients from two centers were assigned to the training and validation cohorts. Based on the multipoint examination of EBV-DNA and tumor response, four post-induction chemotherapy, four mid-radiotherapy, and four post-radiotherapy subgroups were established. Then seven phenotypes were further generated according to different permutations and combinations. These phenotypes were subsequently congregated into four response clusters, which reflect distinct biological treatment responses. The four response clusters correlated with an evident 5-year progression-free survival in both the training and external validation cohorts (5-year: training cohort 91.1 %, 82.8 %, 30.6 %, and 10.0 %; external validation 94.4 %, 55.6 %, 40.0 %, and 12.7 %) had superior prognostic performance compared to TNM staging and nomogram model (concordance index: training cohort—0.825 vs. 0.603 vs. 0.756 and external validation—0.834 vs. 0.606 vs. 0.789). Importantly, the response clusters exhibited an excellent capability in selecting candidates who can benefit from adjuvant chemotherapy. In conclusion, risk stratification based on the dynamic assessment of both radiological and biological responses can significantly enhance prognostic insights and shed light on individualized treatment modifications in LA-NPCs.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217276"},"PeriodicalIF":9.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}