Cancer research最新文献

筛选
英文 中文
H4K20me3-Mediated Repression of Inflammatory Genes is a Characteristic and Targetable Vulnerability of Persister Cancer Cells. H4K20me3 介导的炎症基因抑制是顽固性癌细胞的一个特征性弱点,也是可瞄准的弱点。
IF 12.5 1区 医学
Cancer research Pub Date : 2024-10-30 DOI: 10.1158/0008-5472.CAN-24-0529
Valentina Ramponi, Laia Richart, Marta Kovatcheva, Camille Stephan-Otto Attolini, Jordi Capellades, Alice E Lord, Oscar Yanes, Gabriella Ficz, Manuel Serrano
{"title":"H4K20me3-Mediated Repression of Inflammatory Genes is a Characteristic and Targetable Vulnerability of Persister Cancer Cells.","authors":"Valentina Ramponi, Laia Richart, Marta Kovatcheva, Camille Stephan-Otto Attolini, Jordi Capellades, Alice E Lord, Oscar Yanes, Gabriella Ficz, Manuel Serrano","doi":"10.1158/0008-5472.CAN-24-0529","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-0529","url":null,"abstract":"<p><p>Anti-cancer therapies can induce cellular senescence, which is highly stable, or drug-tolerant persistence, which is efficiently reversed upon therapy termination. While approaches to target senescent cells have been extensively studied, further understanding of the processes regulating persistence is needed to develop treatment strategies to suppress persister cell survival. Here, we used mTOR/PI3K inhibition to develop and characterize a model of persistence-associated arrest in human cancer cells of various origins. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated β-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (SASP). Genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacological inhibition of SHMT, a key enzyme that feeds methyl groups from serine into 1C metabolism. Connecting 1C metabolism with the epigenetic regulation of transcription, the repressive heterochromatic mark H4K20me3 was enriched at the promoters of SASP and interferon response genes in persister cells, while it was absent in proliferative or senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study defined distinctive features of persister cancer cells, identified actionable vulnerabilities, and provided mechanistic insight into their low inflammatory activity.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological blockade of a pioneer transcription factor. 药理阻断先锋转录因子。
IF 12.5 1区 医学
Cancer research Pub Date : 2024-10-30 DOI: 10.1158/0008-5472.CAN-24-3957
Katerina Cermakova, H Courtney Hodges
{"title":"Pharmacological blockade of a pioneer transcription factor.","authors":"Katerina Cermakova, H Courtney Hodges","doi":"10.1158/0008-5472.CAN-24-3957","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-3957","url":null,"abstract":"<p><p>Cancers frequently co-opt lineage-specific transcription factors (TFs) utilized in normal development to sustain proliferation. However, the effects of these TFs on tumor development depend considerably on where in the genome they bind. A new paper by Taylor and colleagues expands on previously developed diamidine compounds that obstruct the DNA binding sites of the pioneer TF PU.1 (SPI1) in acute myeloid leukemia (AML). Immobilization and sequencing of genomic DNA targeted by these compounds revealed that these inhibitors alter the genomic binding patterns of PU.1. The authors report that their strategy constrains the genomic binding preferences of PU.1, leading to redistribution of PU.1 to promoters and other gene-proximal regions with elevated G/C content. Here we discuss recent developments for targeting PU.1 in hematologic malignancies. We also explore the shared functional roles of PU.1 and SWI/SNF ATP-dependent chromatin remodeling complexes, which work together to sustain the enhancer landscape needed for tumor cell proliferation but also have key roles in non-tumor settings.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Functional Transcriptomic Landscape Informs Therapeutic Strategies in Multiple Myeloma. 功能转录组格局为多发性骨髓瘤治疗策略提供依据
IF 12.5 1区 医学
Cancer research Pub Date : 2024-10-30 DOI: 10.1158/0008-5472.CAN-24-0886
Praneeth Reddy Sudalagunta, Rafael R Canevarolo, Mark B Meads, Maria Silva, Xiaohong Zhao, Christopher L Cubitt, Samer S Sansil, Gabriel DeAvila, Raghunandan Reddy Alugubelli, Ryan T Bishop, Alexandre Tungesvik, Qi Zhang, Oliver Hampton, Jamie K Teer, Eric A Welsh, Sean J Yoder, Bijal D Shah, Lori Hazlehurst, Robert A Gatenby, Dane R Van Domelen, Yi Chai, Feng Wang, Andrew DeCastro, Amanda M Bloomer, Erin M Siegel, Conor C Lynch, Daniel M Sullivan, Melissa Alsina, Taiga Nishihori, Jason Brayer, John L Cleveland, William Dalton, Christopher J Walker, Yosef Landesman, Rachid Baz, Ariosto S Silva, Kenneth H Shain
{"title":"The Functional Transcriptomic Landscape Informs Therapeutic Strategies in Multiple Myeloma.","authors":"Praneeth Reddy Sudalagunta, Rafael R Canevarolo, Mark B Meads, Maria Silva, Xiaohong Zhao, Christopher L Cubitt, Samer S Sansil, Gabriel DeAvila, Raghunandan Reddy Alugubelli, Ryan T Bishop, Alexandre Tungesvik, Qi Zhang, Oliver Hampton, Jamie K Teer, Eric A Welsh, Sean J Yoder, Bijal D Shah, Lori Hazlehurst, Robert A Gatenby, Dane R Van Domelen, Yi Chai, Feng Wang, Andrew DeCastro, Amanda M Bloomer, Erin M Siegel, Conor C Lynch, Daniel M Sullivan, Melissa Alsina, Taiga Nishihori, Jason Brayer, John L Cleveland, William Dalton, Christopher J Walker, Yosef Landesman, Rachid Baz, Ariosto S Silva, Kenneth H Shain","doi":"10.1158/0008-5472.CAN-24-0886","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-0886","url":null,"abstract":"<p><p>Several therapeutic agents have been approved for treating multiple myeloma (MM), a cancer of bone marrow resident plasma cells. Predictive biomarkers for drug response could help guide clinical strategies to optimize outcomes. Here, we present an integrated functional genomic analysis of tumor samples from MM patients that were assessed for their ex vivo drug sensitivity to 37 drugs, clinical variables, cytogenetics, mutational profiles, and transcriptomes. This analysis revealed a MM transcriptomic topology that generates \"footprints\" in association with ex vivo drug sensitivity that have both predictive and mechanistic applications. Validation of the transcriptomic footprints for the anti-CD38 monoclonal antibody daratumumab and the nuclear export inhibitor selinexor demonstrated that these footprints can accurately classify clinical responses. The analysis further revealed that daratumumab and selinexor have anti-correlated mechanisms of resistance, and treatment with a selinexor-based regimen immediately after a daratumumab-containing regimen was associated with improved survival in three independent clinical trials, supporting an evolutionary-based strategy involving sequential therapy. These findings suggest that this unique repository and computational framework can be leveraged to inform underlying biology and to identify therapeutic strategies to improve treatment of MM.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOS1 Inhibition Enhances the Efficacy of KRASG12C Inhibitors and Delays Resistance in Lung Adenocarcinoma 抑制 SOS1 可增强 KRASG12C 抑制剂的疗效并延缓肺腺癌的耐药性
IF 11.2 1区 医学
Cancer research Pub Date : 2024-10-22 DOI: 10.1158/0008-5472.can-23-3256
Brianna R. Daley, Nancy E. Sealover, Bridget A. Finniff, Jacob M. Hughes, Erin Sheffels, Daniel Gerlach, Marco H. Hofmann, Kaja Kostyrko, Joseph P. LaMorte, Amanda Linke, Zaria Beckley, Andrew M. Frank, Robert E. Lewis, Matthew D. Wilkerson, Clifton Dalgard, Robert L. Kortum
{"title":"SOS1 Inhibition Enhances the Efficacy of KRASG12C Inhibitors and Delays Resistance in Lung Adenocarcinoma","authors":"Brianna R. Daley, Nancy E. Sealover, Bridget A. Finniff, Jacob M. Hughes, Erin Sheffels, Daniel Gerlach, Marco H. Hofmann, Kaja Kostyrko, Joseph P. LaMorte, Amanda Linke, Zaria Beckley, Andrew M. Frank, Robert E. Lewis, Matthew D. Wilkerson, Clifton Dalgard, Robert L. Kortum","doi":"10.1158/0008-5472.can-23-3256","DOIUrl":"https://doi.org/10.1158/0008-5472.can-23-3256","url":null,"abstract":"The clinical effectiveness of KRASG12C inhibitors (G12Ci) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. Here, we identified targeting proximal receptor tyrosine kinase (RTK) signaling using the SOS1 inhibitor (SOS1i) BI-3406 as a strategy to improve responses to G12Ci treatment. SOS1i enhanced the efficacy of G12Ci and limited rebound RTK/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels. G12Ci drug tolerant persister (DTP) cells showed up to a 3-fold enrichment of tumor initiating cells (TIC), suggestive of a sanctuary population of G12Ci resistant cells. SOS1i re-sensitized DTPs to G12Ci and inhibited G12C-induced TIC enrichment. Co-mutation of the tumor suppressor KEAP1 limited the clinical effectiveness of G12Ci, and KEAP1 and STK11 deletion increased TIC frequency and accelerated the development of acquired resistance to G12Ci, consistent with clinical G12Ci resistance seen with these co-mutations. Treatment with SOS1i both delayed acquired G12Ci resistance and limited the total number of resistant colonies regardless of KEAP1 and STK11 mutational status. Together, these data suggest that targeting SOS1 could be an effective strategy to both enhance G12Ci efficacy and prevent G12Ci resistance regardless of co-mutations.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"2 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Degradation of SOS1 Exhibits Potent Anticancer Activity and Overcomes Resistance in KRAS-Mutant Tumors and BCR-ABL-Positive Leukemia 靶向降解 SOS1 在 KRAS 突变肿瘤和 BCR-ABL 阳性白血病中显示出强大的抗癌活性并克服抗药性
IF 11.2 1区 医学
Cancer research Pub Date : 2024-10-22 DOI: 10.1158/0008-5472.can-24-1093
Ziwei Luo, Chencen Lin, Chuwei Yu, Changxian Yuan, Wenyong Wu, Xiaowei Xu, Renhong Sun, Yan Jia, yafang wang, Jie Shen, Dingyan Wang, Sinan Wang, Hualiang Jiang, Biao Jiang, Xiaobao Yang, Chengying Xie
{"title":"Targeted Degradation of SOS1 Exhibits Potent Anticancer Activity and Overcomes Resistance in KRAS-Mutant Tumors and BCR-ABL-Positive Leukemia","authors":"Ziwei Luo, Chencen Lin, Chuwei Yu, Changxian Yuan, Wenyong Wu, Xiaowei Xu, Renhong Sun, Yan Jia, yafang wang, Jie Shen, Dingyan Wang, Sinan Wang, Hualiang Jiang, Biao Jiang, Xiaobao Yang, Chengying Xie","doi":"10.1158/0008-5472.can-24-1093","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1093","url":null,"abstract":"SOS1 is an essential guanine nucleotide exchange factor for RAS that also plays a critical role in the activation of the small GTPase RAC mediated by BCR-ABL in leukemogenesis. Despite this, small molecule inhibitors targeting SOS1 have shown limited efficacy in clinical trials for KRAS mutant cancers, and their potential as a therapeutic approach for chronic myeloid leukemia (CML) remains largely unexplored. In this study, we developed a potent SOS1 PROTAC SIAIS562055, which was designed by connecting a CRBN ligand to an analogue of the SOS1 inhibitor BI-3406. SIAIS562055 exhibited sustained degradation of SOS1 and inhibition of downstream ERK pathways, resulting in superior anti-proliferative activity compared to small molecule inhibitors. SIAIS562055 also potentiated the activity of both KRAS inhibitors in KRAS-mutant cancers and ABL inhibitors in BCR-ABL+ CML. In KRAS-mutant xenografts, SIAIS562055 displayed promising antitumor potency as a monotherapy and enhanced ERK inhibition and tumor regression when combined with KRAS inhibitors, overcoming acquired resistance. In CML cells, SIAIS562055 promoted the active uptake of BCR-ABL inhibitors by upregulating the carnitine/organic cation transporter SLC22A4. SIAIS562055 and BCR-ABL inhibitors synergistically enhanced inhibition of ABL phosphorylation and downstream signaling, demonstrating robust antitumor activities in both mouse xenografts and primary CML patient samples. In summary, this study suggests that PROTAC-mediated SOS1 degradation represents an effective therapeutic strategy for treating not only KRAS-mutant cancers but also BCR-ABL-harboring leukemia.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"79 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distant Metastases of Breast Cancer Resemble Primary Tumors in Cancer Cell Composition but Differ in Immune Cell Phenotypes 乳腺癌远处转移灶的癌细胞组成与原发肿瘤相似,但免疫细胞表型不同
IF 11.2 1区 医学
Cancer research Pub Date : 2024-10-22 DOI: 10.1158/0008-5472.can-24-1211
Laura Kuett, Alina Bollhagen, Sandra Tietscher, Bettina Sobottka, Nils Eling, Zsuzsanna Varga, Holger Moch, Natalie de Souza, Bernd Bodenmiller
{"title":"Distant Metastases of Breast Cancer Resemble Primary Tumors in Cancer Cell Composition but Differ in Immune Cell Phenotypes","authors":"Laura Kuett, Alina Bollhagen, Sandra Tietscher, Bettina Sobottka, Nils Eling, Zsuzsanna Varga, Holger Moch, Natalie de Souza, Bernd Bodenmiller","doi":"10.1158/0008-5472.can-24-1211","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1211","url":null,"abstract":"Breast cancer is the most commonly diagnosed cancer in women, with distant metastasis being the main cause of breast cancer-related deaths. Elucidating the changes in the tumor and immune ecosystems that are associated with metastatic disease is essential to improve understanding and ultimately treatment of metastasis. Here, we developed an in-depth, spatially resolved single-cell atlas of the phenotypic diversity of tumor and immune cells in primary human breast tumors and matched distant metastases, using imaging mass cytometry to analyze a total of 75 unique antibody targets. While the same tumor cell phenotypes were typically present in primary tumors and metastatic sites, suggesting a strong founder effect of the primary tumor, their proportions varied between matched samples. Notably, the metastatic site did not influence tumor phenotype composition, except for the brain. Metastatic sites exhibited a lower number of immune cells overall, but had a higher proportion of myeloid cells as well as exhausted and cytotoxic T cells. Myeloid cells showed distinct tissue-specific compositional signatures and increased presence of potentially matrix remodeling phenotypes in metastatic sites. This analysis of tumor and immune cell phenotypic composition of metastatic breast cancer highlights the heterogeneity of the disease within patients and across distant metastatic sites, indicating myeloid cells as the predominant immune modulators that could potentially be targeted at these sites.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"30 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AKT and the Hallmarks of Cancer AKT 和癌症的特征
IF 11.2 1区 医学
Cancer research Pub Date : 2024-10-22 DOI: 10.1158/0008-5472.can-24-1846
Eleonora Sementino, Dalal Hassan, Alfonso Bellacosa, Joseph R. Testa
{"title":"AKT and the Hallmarks of Cancer","authors":"Eleonora Sementino, Dalal Hassan, Alfonso Bellacosa, Joseph R. Testa","doi":"10.1158/0008-5472.can-24-1846","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1846","url":null,"abstract":"Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development  cancer hallmarks  would evolve to fourteen tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and phosphatidylinositol 3-kinase activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor intrinsic dysregulation of AKT can have numerous adverse cellular and pathological ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"20 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The EP3–ZNF488 Axis Promotes Self-Renewal of Glioma Stem-like Cells to Induce Resistance to Tumor Treating Fields EP3-ZNF488轴促进胶质瘤干样细胞自我更新,诱导对肿瘤治疗领域的抵抗力
IF 11.2 1区 医学
Cancer research Pub Date : 2024-10-16 DOI: 10.1158/0008-5472.can-23-3643
Dongjiang Chen, Son B. Le, Harshit Manektalia, Tianyi Liu, Tarun E. Hutchinson, Adam O'Dell, Bodour Salhia, David D. Tran
{"title":"The EP3–ZNF488 Axis Promotes Self-Renewal of Glioma Stem-like Cells to Induce Resistance to Tumor Treating Fields","authors":"Dongjiang Chen, Son B. Le, Harshit Manektalia, Tianyi Liu, Tarun E. Hutchinson, Adam O'Dell, Bodour Salhia, David D. Tran","doi":"10.1158/0008-5472.can-23-3643","DOIUrl":"https://doi.org/10.1158/0008-5472.can-23-3643","url":null,"abstract":"Tumor Treating Fields (TTFields) employ low-intensity, alternating electric fields to exert antitumor activity and have demonstrated efficacy against multiple cancers, including glioblastoma (GBM). Unfortunately, cancer cells inevitably develop resistance to TTFields, highlighting the need to elucidate the underlying mechanisms to develop approaches to induce durable responses. Using a gene network-based machine-learning algorithm, we interrogated TTFields-resistant GBM cells and uncovered a regulatory axis anchored by the prostaglandin E receptor 3 (EP3) and the transcription factor zinc finger 488 (ZNF488). Mechanistically, TTFields induced EP3 upregulation and nuclear envelope localization, where it formed a complex with ZNF488 to induce resistance to TTFields by promoting self-renewal of glioma stem-like cells (GSC). Overexpression of EP3 and/or ZNF488 in TTFields-sensitive GSC conferred resistance and enhanced self-renewal, while expression of non-interacting mutants of these proteins abrogated formation of the nuclear complex and prevented resistance. Inhibition of either partner in this protein complex in resistant GSC, including those freshly isolated from TTFields-resistant GBM tumors, re-sensitized cells to the cytotoxic effects of TTFields, concomitant with reduced self-renewal and in vivo tumorigenicity. Importantly, inhibition of EP3 in TTFields-sensitive GSC preemptively halted the development of resistance. The EP3–ZNF488 axis was significantly upregulated in TTFields-resistant GBM tumors, and co-expression of EP3 and ZNF488 in other cancers correlated with lower survival rates. Collectively, these results indicate that the nuclear EP3–ZNF488 axis is necessary and sufficient to establish TTFields resistance, underscoring the potential to target this axis to prevent or reverse resistance in GBM and possibly other cancers.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"31 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ephrin A1 Stimulates CCL2 Secretion to Facilitate Pre-metastatic Niche Formation and Promote Gastric Cancer Liver Metastasis Ephrin A1刺激CCL2分泌,促进转移前龛位形成并促进胃癌肝转移
IF 11.2 1区 医学
Cancer research Pub Date : 2024-10-16 DOI: 10.1158/0008-5472.can-24-1254
Yun Cui, Yongxia Chang, Xixi Ma, Meng Sun, Yuliang Huang, Feng Yang, Shuang Li, Wei Zhuo, Wei Liu, Bo Yang, Aifu Lin, Guangshuo Ou, Yuehong Yang, Shanshan Xie, Tianhua Zhou
{"title":"Ephrin A1 Stimulates CCL2 Secretion to Facilitate Pre-metastatic Niche Formation and Promote Gastric Cancer Liver Metastasis","authors":"Yun Cui, Yongxia Chang, Xixi Ma, Meng Sun, Yuliang Huang, Feng Yang, Shuang Li, Wei Zhuo, Wei Liu, Bo Yang, Aifu Lin, Guangshuo Ou, Yuehong Yang, Shanshan Xie, Tianhua Zhou","doi":"10.1158/0008-5472.can-24-1254","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1254","url":null,"abstract":"The liver is a primary target for distal metastasis of gastric cancer (GC). The hepatic pre-metastatic niche (PMN) facilitates crucial communications between primary tumor and liver, thereby playing an essential role in hepatic metastasis. Identification of the molecular mechanisms driving PMN formation in GC could facilitate development of strategies to prevent and treat liver metastasis. Here, we uncovered a role for ephrin A1 (EFNA1) signaling in development of the PMN. EFNA1 overexpression in GC cells significantly increased CCL2 secretion through the Hippo-YAP pathway. Secreted CCL2 activated hepatic stellate cells (HStCs) within the hepatic PMN via the WNT/β-catenin pathway. Inhibition of CCL2 significantly suppressed HStC activation and reduced liver metastasis triggered by EFNA1 signaling in GC cells. Moreover, high CCL2 expression correlated with poor survival in GC patients. Overall, these findings reveal that EFNA1 signaling in GC cells upregulates CCL2, which activates HStCs to engender establishment of a hepatic pre-metastatic niche that supports liver metastasis.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"1 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replication Stress is an Actionable Genetic Vulnerability in Desmoplastic Small Round Cell Tumors 复制应激是脱鳞小圆形细胞瘤中一种可操作的遗传脆弱性
IF 11.2 1区 医学
Cancer research Pub Date : 2024-10-16 DOI: 10.1158/0008-5472.can-23-3603
Asuka Kawai-Kawachi, Madison M. Lenormand, Clémence Astier, Noé Herbel, Meritxell B. Cutrona, Carine Ngo, Marlène Garrido, Thomas Eychenne, Nicolas Dorvault, Laetitia Bordelet, Fei Fei Song, Ryme Bouyakoub, Anastasia Loktev, Antonio Romo-Morales, Clémence Henon, Léo Colmet-Daage, Julien Vibert, Marjorie Drac, Rachel Brough, Etienne Schwob, Oliviano Martella, Guillaume Pinna, Janet M. Shipley, Sibylle Mittnacht, Astrid Zimmermann, Aditi Gulati, Olivier Mir, Axel Le Cesne, Matthieu Faron, Charles Honoré, Christopher J. Lord, Roman M. Chabanon, Sophie Postel-Vinay
{"title":"Replication Stress is an Actionable Genetic Vulnerability in Desmoplastic Small Round Cell Tumors","authors":"Asuka Kawai-Kawachi, Madison M. Lenormand, Clémence Astier, Noé Herbel, Meritxell B. Cutrona, Carine Ngo, Marlène Garrido, Thomas Eychenne, Nicolas Dorvault, Laetitia Bordelet, Fei Fei Song, Ryme Bouyakoub, Anastasia Loktev, Antonio Romo-Morales, Clémence Henon, Léo Colmet-Daage, Julien Vibert, Marjorie Drac, Rachel Brough, Etienne Schwob, Oliviano Martella, Guillaume Pinna, Janet M. Shipley, Sibylle Mittnacht, Astrid Zimmermann, Aditi Gulati, Olivier Mir, Axel Le Cesne, Matthieu Faron, Charles Honoré, Christopher J. Lord, Roman M. Chabanon, Sophie Postel-Vinay","doi":"10.1158/0008-5472.can-23-3603","DOIUrl":"https://doi.org/10.1158/0008-5472.can-23-3603","url":null,"abstract":"Desmoplastic small round cell tumor (DSRCT) is an aggressive sarcoma subtype that is driven by the EWS-WT1 chimeric transcription factor. The prognosis for DSRCT is poor, and major advances in treating DSCRT have not occurred for over two decades. To identify effective therapeutic approaches to target DSRCT, we conducted a high-throughput drug sensitivity screen in a DSRCT cell line assessing chemosensitivity profiles for 79 small-molecule inhibitors. DSRCT cells were sensitive to PARP and ATR inhibitors (PARPi, ATRi), as monotherapies and in combination. These effects were recapitulated using multiple clinical PARPi and ATRi in three biologically distinct, clinically-relevant models of DSRCT, including cell lines, a patient-derived xenograft (PDX)-derived organoid model, and a cell line-derived xenograft mouse model. Mechanistically, exposure to a combination of PARPi and ATRi caused increased DNA damage, G2/M checkpoint activation, micronuclei accumulation, replication stress, and R-loop formation. EWS-WT1 silencing abrogated these phenotypes and was epistatic with exogenous expression of the R-loop resolution enzyme RNase H1 in reversing the sensitivity to PARPi and ATRi monotherapies. The combination of PARPi and ATRi also induced EWS-WT1-dependent cell-autonomous activation of the cGAS/STING innate immune pathway and cell surface expression of PD-L1. Taken together, these findings point towards a role for EWS-WT1 in generating R-loop-dependent replication stress that leads to a targetable vulnerability, providing a rationale for the clinical assessment of PARPi and ATRi in DSRCT.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"209 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信