Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-23-3257
Haoran Xu, Ming Yue, Runhong Zhou, Pui Wang, Michael Yik-Chun Wong, Jinlin Wang, Huarong Huang, Bohao Chen, Yufei Mo, Rachel Chun-Yee Tam, Biao Zhou, Zhenglong Du, Haode Huang, Li Liu, Zhiwu Tan, Kwok-Yung Yuen, Youqiang Song, Honglin Chen, Zhiwei Chen
{"title":"A Prime-Boost Vaccination Approach Induces Lung Resident Memory CD8+ T Cells Derived from Central Memory T Cells That Prevent Tumor Lung Metastasis.","authors":"Haoran Xu, Ming Yue, Runhong Zhou, Pui Wang, Michael Yik-Chun Wong, Jinlin Wang, Huarong Huang, Bohao Chen, Yufei Mo, Rachel Chun-Yee Tam, Biao Zhou, Zhenglong Du, Haode Huang, Li Liu, Zhiwu Tan, Kwok-Yung Yuen, Youqiang Song, Honglin Chen, Zhiwei Chen","doi":"10.1158/0008-5472.CAN-23-3257","DOIUrl":"10.1158/0008-5472.CAN-23-3257","url":null,"abstract":"<p><p>Memory T cells play a key role in immune protection against cancer. Vaccine-induced tissue-resident memory T (TRM) cells in the lung have been shown to protect against lung metastasis. Identifying the source of lung TRM cells can help to improve strategies, preventing tumor metastasis. Here, we found that a prime-boost vaccination approach using intramuscular DNA vaccine priming, followed by intranasal live-attenuated influenza-vectored vaccine (LAIV) boosting induced higher frequencies of lung CD8+ TRM cells compared with other vaccination regimens. Vaccine-induced lung CD8+ TRM cells, but not circulating memory T cells, conferred significant protection against metastatic melanoma and mesothelioma. Central memory T (TCM) cells induced by the DNA vaccination were major precursors of lung TRM cells established after the intranasal LAIV boost. Single-cell RNA sequencing analysis indicated that transcriptional reprogramming of TCM cells for differentiation into TRM cells in the lungs started as early as day 2 post the LAIV boost. Intranasal LAIV altered the mucosal microenvironment to recruit TCM cells via CXCR3-dependent chemotaxis and induced CD8+ TRM-associated transcriptional programs. These results identified TCM cells as the source of vaccine-induced CD8+ TRM cells that protect against lung metastasis. Significance: Prime-boost vaccination shapes the mucosal microenvironment and reprograms central memory T cells to generate lung resident memory T cells that protect against lung metastasis, providing insights for the optimization of vaccine strategies.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-24-2889
Tadas K Rimkus, Richard L Carpenter, Sherona Sirkisoon, Dongqin Zhu, Boris C Pasche, Michael D Chan, Glenn J Lesser, Stephen B Tatter, Kounosuke Watabe, Waldemar Debinski, Hui-Wen Lo
{"title":"Editor's Note: Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates Mesenchymal Glioblastoma via Transcriptional Activation of CD44.","authors":"Tadas K Rimkus, Richard L Carpenter, Sherona Sirkisoon, Dongqin Zhu, Boris C Pasche, Michael D Chan, Glenn J Lesser, Stephen B Tatter, Kounosuke Watabe, Waldemar Debinski, Hui-Wen Lo","doi":"10.1158/0008-5472.CAN-24-2889","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-2889","url":null,"abstract":"","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-24-0642
Yuewen Zhai, Xinyu Xu, Ji Fang, Fang He, Siwen Li
{"title":"Induced Pluripotent Stem Cells Facilitate the Development and Evaluation of Cancer Vaccines.","authors":"Yuewen Zhai, Xinyu Xu, Ji Fang, Fang He, Siwen Li","doi":"10.1158/0008-5472.CAN-24-0642","DOIUrl":"10.1158/0008-5472.CAN-24-0642","url":null,"abstract":"<p><p>Cancer vaccines are an approach to elicit amplified antigen-specific immune responses. Induced pluripotent stem cells (iPSC) have potential utility for the development of universal vaccines because of their intrinsic antigenic epitopes. Concurrently, iPSCs can undergo pluripotent differentiation and are thus a stable source of both antigen-presenting cells for producing immune cell-based vaccines and tumor organoids for facilitating the exploration and adaptive assessment of tumor vaccines. This review describes the specific contributions of iPSCs to vaccine development, summarizes their diverse developmental trajectories, and discusses the obstacles to their application along with potential solutions.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-24-2407
Stephen Connor Purdy, Heide L Ford
{"title":"Remembering Hypoxia: Uncovering the Long-Term Effects of Transient Oxygen Deprivation on IFN Signaling and Progression of Breast Cancer.","authors":"Stephen Connor Purdy, Heide L Ford","doi":"10.1158/0008-5472.CAN-24-2407","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-2407","url":null,"abstract":"<p><p>Hypoxia occurs in 90% of solid tumors and is strongly associated with an increased propensity for metastasis. Hypoxia induces tumor progression largely through inducing HIF-mediated transcription, resulting in alterations to tumor cell metabolism, as well as increases in migration and invasion. Hypoxia also results in a myriad of changes to the tumor microenvironment (TME). While many studies have examined the immediate effects of hypoxia on tumor cells and the associated TME, far fewer have focused on the long-term consequences of transient reductions in oxygen. In this issue of Cancer Research, Iriondo and colleagues examined whether short-term exposure to hypoxia leads to a \"hypoxic memory\" in the context of breast cancer. The authors used established cell lines and circulating tumor cell lines to demonstrate that these cells harbor a hypoxic memory that sustains downregulation of IFN signaling and antigen presentation (AP) pathways that contribute to tumor progression via alterations to tumor cells and the TME. The authors further showed that cells that have experienced hypoxia maintain the reduction in IFN signaling in vivo and are more aggressive. They determined that the hypoxic memory and reduction of IFN signaling can be reversed with a histone deacetylase inhibitor, entinostat, providing a potential means to reverse hypoxia-induced suppression of IFN signaling. As suppression of IFN signaling has the potential to influence both tumor cells and the TME, the identification of a strategy to inhibit long-term suppression of IFN signaling downstream of hypoxia could prove to be an effective means to target tumor progression. See related article by Iriondo et al., p. 3141.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proteomic Profiling of Serum Extracellular Vesicles Identifies Diagnostic Signatures and Therapeutic Targets in Breast Cancer.","authors":"Ganfei Xu, Rui Huang, Reziya Wumaier, Jiacheng Lyu, Minjing Huang, Yaya Zhang, Qingjian Chen, Wenting Liu, Mengyu Tao, Junjian Li, Zhonghua Tao, Bo Yu, Erxiang Xu, Lingfeng Wang, Guoying Yu, Olivier Gires, Lei Zhou, Wei Zhu, Chen Ding, Hongxia Wang","doi":"10.1158/0008-5472.CAN-23-3998","DOIUrl":"10.1158/0008-5472.CAN-23-3998","url":null,"abstract":"<p><p>Analysis of extracellular vesicles (EV) is a promising noninvasive liquid biopsy approach for breast cancer detection, prognosis, and therapeutic monitoring. A comprehensive understanding of the characteristics and proteomic composition of breast cancer-specific EVs from human samples is required to realize the potential of this strategy. In this study, we applied a mass spectrometry-based, data-independent acquisition proteomic approach to characterize human serum EVs derived from patients with breast cancer (n = 126) and healthy donors (n = 70) in a discovery cohort and validated the findings in five independent cohorts. Examination of the EV proteomes enabled the construction of specific EV protein classifiers for diagnosing breast cancer and distinguishing patients with metastatic disease. Of note, TALDO1 was found to be an EV biomarker of distant metastasis of breast cancer. In vitro and in vivo analysis confirmed the role of TALDO1 in stimulating breast cancer invasion and metastasis. Finally, high-throughput molecular docking and virtual screening of a library consisting of 271,380 small molecules identified a potent TALDO1 allosteric inhibitor, AO-022, which could inhibit breast cancer migration in vitro and tumor progression in vivo. Together, this work elucidates the proteomic alterations in the serum EVs of breast cancer patients to guide the development of improved diagnosis, monitoring, and treatment strategies. Significance: Characterization of the proteomic composition of circulating extracellar vesicles in breast cancer patients identifies signatures for diagnosing primary and metastatic tumors and reveals tumor-promoting cargo that can be targeted to improve outcomes.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-23-4054
Maria E Gonzalez, Bryce Brophy, Ahmad Eido, Adele E Leonetti, Sabra I Djomehri, Giuseppina Augimeri, Nicholas J Carruthers, Raymond G Cavalcante, Francesca Giordano, Sebastiano Andò, Alexey I Nesvizhskii, Eric R Fearon, Celina G Kleer
{"title":"CCN6 Suppresses Metaplastic Breast Carcinoma by Antagonizing Wnt/β-Catenin Signaling to Inhibit EZH2-Driven EMT.","authors":"Maria E Gonzalez, Bryce Brophy, Ahmad Eido, Adele E Leonetti, Sabra I Djomehri, Giuseppina Augimeri, Nicholas J Carruthers, Raymond G Cavalcante, Francesca Giordano, Sebastiano Andò, Alexey I Nesvizhskii, Eric R Fearon, Celina G Kleer","doi":"10.1158/0008-5472.CAN-23-4054","DOIUrl":"10.1158/0008-5472.CAN-23-4054","url":null,"abstract":"<p><p>Metaplastic breast carcinomas (mBrCA) are a highly aggressive subtype of triple-negative breast cancer with histologic evidence of epithelial-to-mesenchymal transition and aberrant differentiation. Inactivation of the tumor suppressor gene cellular communication network factor 6 (CCN6; also known as Wnt1-induced secreted protein 3) is a feature of mBrCAs, and mice with conditional inactivation of Ccn6 in mammary epithelium (Ccn6-KO) develop spindle mBrCAs with epithelial-to-mesenchymal transition. Elucidation of the precise mechanistic details of how CCN6 acts as a tumor suppressor in mBrCA could help identify improved treatment strategies. In this study, we showed that CCN6 interacts with the Wnt receptor FZD8 and coreceptor LRP6 on mBrCA cells to antagonize Wnt-induced activation of β-catenin/TCF-mediated transcription. The histone methyltransferase EZH2 was identified as a β-catenin/TCF transcriptional target in Ccn6-KO mBrCA cells. Inhibiting Wnt/β-catenin/TCF signaling in Ccn6-KO mBrCA cells led to reduced EZH2 expression, decreased histone H3 lysine 27 trimethylation, and deregulation of specific target genes. Pharmacologic inhibition of EZH2 reduced growth and metastasis of Ccn6-KO mBrCA mammary tumors in vivo. Low CCN6 is significantly associated with activated β-catenin and high EZH2 in human spindle mBrCAs compared with other subtypes. Collectively, these findings establish CCN6 as a key negative regulator of a β-catenin/TCF/EZH2 axis and highlight the inhibition of β-catenin or EZH2 as a potential therapeutic approach for patients with spindle mBrCAs. Significance: CCN6 deficiency drives metaplastic breast carcinoma growth and metastasis by increasing Wnt/β-catenin activation to upregulate EZH2, identifying EZH2 inhibition as a mechanistically guided treatment strategy for this deadly form of breast cancer.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-23-3486
Yuepeng Cao, Nannan Wang, Xuxiaochen Wu, Wanxiangfu Tang, Hua Bao, Chengshuai Si, Peng Shao, Dongzheng Li, Xin Zhou, Dongqin Zhu, Shanshan Yang, Fufeng Wang, Guoqing Su, Ke Wang, Qifan Wang, Yao Zhang, Qiangcheng Wang, Dongsheng Yu, Qian Jiang, Jun Bao, Liu Yang
{"title":"Multidimensional Fragmentomics Enables Early and Accurate Detection of Colorectal Cancer.","authors":"Yuepeng Cao, Nannan Wang, Xuxiaochen Wu, Wanxiangfu Tang, Hua Bao, Chengshuai Si, Peng Shao, Dongzheng Li, Xin Zhou, Dongqin Zhu, Shanshan Yang, Fufeng Wang, Guoqing Su, Ke Wang, Qifan Wang, Yao Zhang, Qiangcheng Wang, Dongsheng Yu, Qian Jiang, Jun Bao, Liu Yang","doi":"10.1158/0008-5472.CAN-23-3486","DOIUrl":"10.1158/0008-5472.CAN-23-3486","url":null,"abstract":"<p><p>Colorectal cancer is frequently diagnosed in advanced stages, highlighting the need for developing approaches for early detection. Liquid biopsy using cell-free DNA (cfDNA) fragmentomics is a promising approach, but the clinical application is hindered by complexity and cost. This study aimed to develop an integrated model using cfDNA fragmentomics for accurate, cost-effective early-stage colorectal cancer detection. Plasma cfDNA was extracted and sequenced from a training cohort of 360 participants, including 176 patients with colorectal cancer and 184 healthy controls. An ensemble stacked model comprising five machine learning models was employed to distinguish patients with colorectal cancer from healthy controls using five cfDNA fragmentomic features. The model was validated in an independent cohort of 236 participants (117 patients with colorectal cancer and 119 controls) and a prospective cohort of 242 participants (129 patients with colorectal cancer and 113 controls). The ensemble stacked model showed remarkable discriminatory power between patients with colorectal cancer and controls, outperforming all base models and achieving a high area under the receiver operating characteristic curve of 0.986 in the validation cohort. It reached 94.88% sensitivity and 98% specificity for detecting colorectal cancer in the validation cohort, with sensitivity increasing as the cancer progressed. The model also demonstrated consistently high accuracy in within-run and between-run tests and across various conditions in healthy individuals. In the prospective cohort, it achieved 91.47% sensitivity and 95.58% specificity. This integrated model capitalizes on the multiplex nature of cfDNA fragmentomics to achieve high sensitivity and robustness, offering significant promise for early colorectal cancer detection and broad patient benefit. Significance: The development of a minimally invasive, efficient approach for early colorectal cancer detection using advanced machine learning to analyze cfDNA fragment patterns could expedite diagnosis and improve treatment outcomes for patients. See related commentary by Rolfo and Russo, p. 3128.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-24-1620
Christian Rolfo, Alessandro Russo
{"title":"The Next Frontier for Colorectal Cancer Screening: Blood-Based Tests.","authors":"Christian Rolfo, Alessandro Russo","doi":"10.1158/0008-5472.CAN-24-1620","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-1620","url":null,"abstract":"<p><p>Colorectal cancer is associated with substantial morbidity and mortality worldwide. Detection of early colorectal cancer is possible through approved screening tests but overall adherence is quite low. Implementation of effective noninvasive options could increase screening uptake and prevent a significant number of deaths. Noninvasive early cancer detection can potentially be achieved using a liquid biopsy. In this issue of Cancer Research, Cao and colleagues report on a novel multidimensional fragmentomics assay, named FRAGTECT, for colorectal cancer detection in circulating cell-free DNA with promising results. See related article by Cao et al., p. 3286.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-24-0970
Alissandra L Hillis, Timothy D Martin, Haley E Manchester, Jenny Högström, Na Zhang, Emmalyn Lecky, Nina Kozlova, Jonah Lee, Nicole S Persky, David E Root, Myles Brown, Karen Cichowski, Stephen J Elledge, Taru Muranen, David A Fruman, Simon T Barry, John G Clohessy, Ralitsa R Madsen, Alex Toker
{"title":"Targeting Cholesterol Biosynthesis with Statins Synergizes with AKT Inhibitors in Triple-Negative Breast Cancer.","authors":"Alissandra L Hillis, Timothy D Martin, Haley E Manchester, Jenny Högström, Na Zhang, Emmalyn Lecky, Nina Kozlova, Jonah Lee, Nicole S Persky, David E Root, Myles Brown, Karen Cichowski, Stephen J Elledge, Taru Muranen, David A Fruman, Simon T Barry, John G Clohessy, Ralitsa R Madsen, Alex Toker","doi":"10.1158/0008-5472.CAN-24-0970","DOIUrl":"10.1158/0008-5472.CAN-24-0970","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is responsible for a disproportionate number of breast cancer patient deaths due to extensive molecular heterogeneity, high recurrence rates, and lack of targeted therapies. Dysregulation of the phosphoinositide 3-kinase (PI3K)/AKT pathway occurs in approximately 50% of TNBC patients. Here, we performed a genome-wide CRISPR/Cas9 screen with PI3Kα and AKT inhibitors to find targetable synthetic lethalities in TNBC. Cholesterol homeostasis was identified as a collateral vulnerability with AKT inhibition. Disruption of cholesterol homeostasis with pitavastatin synergized with AKT inhibition to induce TNBC cytotoxicity in vitro in mouse TNBC xenografts and in patient-derived estrogen receptor (ER)-negative breast cancer organoids. Neither ER-positive breast cancer cell lines nor ER-positive organoids were sensitive to combined AKT inhibitor and pitavastatin. Mechanistically, TNBC cells showed impaired sterol regulatory element-binding protein 2 (SREBP-2) activation in response to single-agent or combination treatment with AKT inhibitor and pitavastatin, which was rescued by inhibition of the cholesterol-trafficking protein Niemann-Pick C1 (NPC1). NPC1 loss caused lysosomal cholesterol accumulation, decreased endoplasmic reticulum cholesterol levels, and promoted SREBP-2 activation. Taken together, these data identify a TNBC-specific vulnerability to the combination of AKT inhibitors and pitavastatin mediated by dysregulated cholesterol trafficking. These findings support combining AKT inhibitors with pitavastatin as a therapeutic modality in TNBC. Significance: Two FDA-approved compounds, AKT inhibitors and pitavastatin, synergize to induce cell death in triple-negative breast cancer, motivating evaluation of the efficacy of this combination in clinical trials.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-10-01DOI: 10.1158/0008-5472.CAN-24-2888
Louis Chesler, Chris Schlieve, David D Goldenberg, Anna Kenney, Grace Kim, Alex McMillan, Katherine K Matthay, David Rowitch, William A Weiss
{"title":"Editor's Note: Inhibition of Phosphatidylinositol 3-Kinase Destabilizes Mycn Protein and Blocks Malignant Progression in Neuroblastoma.","authors":"Louis Chesler, Chris Schlieve, David D Goldenberg, Anna Kenney, Grace Kim, Alex McMillan, Katherine K Matthay, David Rowitch, William A Weiss","doi":"10.1158/0008-5472.CAN-24-2888","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-2888","url":null,"abstract":"","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}