Cancer researchPub Date : 2024-11-26DOI: 10.1158/0008-5472.CAN-24-4442
Namgyu Lee, Dohoon Kim
{"title":"Adapt or Perish: Efficient Selenocysteine Insertion is Critical for Metastasizing Cancer Cells.","authors":"Namgyu Lee, Dohoon Kim","doi":"10.1158/0008-5472.CAN-24-4442","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-4442","url":null,"abstract":"<p><p>During metastasis, cancer cells detach from the primary tumor, circulate through the bloodstream, and establish themselves at distant sites, facing increased levels of reactive oxygen species (ROS) that act as significant barriers to metastatic progression. Adapting to and surviving in these high-ROS environments is thus crucial for successful metastasis. A recent study by Nease and colleagues identified FTSJ1 as the methyltransferase responsible for methylation of the U34 position wobble uridine modification of selenocysteine (Sec) tRNA. This methylation enables efficient Sec insertion, leading to increased translation of a subset of stress-responsive selenoproteins that combat the oxidative stress encountered during the metastatic process. This study establishes FTSJ1 as an essential redox regulator during metastasis through its role in enhancing Sec insertion efficiency, and introduces a potential therapeutic strategy against metastasis.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breast Cancer Subtype-Specific Organotropism is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery.","authors":"Wen-Jing Jiang, Tian-Hao Zhou, Huan-Jing Huang, Lin-Sen Li, Hao Tan, Rui Zhang, Qing-Shan Wang, Yu-Mei Feng","doi":"10.1158/0008-5472.CAN-24-0479","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-0479","url":null,"abstract":"<p><p>Breast cancer subtypes display different metastatic organotropism. Identification of the mechanisms underlying subtype-specific organotropism could help uncover potential approaches to prevent and treat metastasis. Herein, we found that FOXF2 promoted the seeding and proliferative recovery from dormancy of luminal breast cancer (LumBC) and basal-like breast cancer (BLBC) cells in the bone by activating the NF-κB and BMP signaling pathways. Conversely, FOXF2 suppressed the seeding and proliferative recovery of BLBC cells in the lung by repressing the TGF-β signaling pathway. FOXF2 directly upregulated RelA/p65 transcription and expression in LumBC and BLBC cells by binding to the RELA proximal promoter region, and RelA/p65 bound to the FOXF2 proximal promoter region to upregulate expression, forming a positive feedback loop. Targeting the NF-κB pathway efficiently prevented the metastasis of FOXF2-overexpressing breast cancer cells to the bone, while inhibiting TGF-β signaling blocked the metastasis of BLBC with low FOXF2 expression to the lung. These findings uncover critical mechanisms of breast cancer subtype-specific organotropism and provide insight into precision assessment and treatment strategies.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-11-26DOI: 10.1158/0008-5472.CAN-24-4458
Xingjian Qiu, Aaron Yang, Amanda C Poholek
{"title":"Stayin' Alive: Targeting chromatin regulators of clonal hematopoiesis promotes CD8 T cell stemness.","authors":"Xingjian Qiu, Aaron Yang, Amanda C Poholek","doi":"10.1158/0008-5472.CAN-24-4458","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-4458","url":null,"abstract":"<p><p>T cell exhaustion remains a significant barrier to immunotherapeutic success for many patients with solid tumors. Growing evidence suggests that enhanced survival and self-renewal properties of a stem-like precursor T cell population (Tpex) is correlated with a survival advantage in immunotherapy. In a recent study published in Science, Kang and colleagues find three epigenetic regulators commonly mutated in clonal hematopoiesis also control Tpex progression to exhaustion. By leveraging the finding that patients with enhanced survival in myelodysplastic syndrome (MDS) had T cell mutations in the ASXL1 gene, this study demonstrates that loss of ASXL1 in T cells preserves their stem-cell like properties of self-renewal and survival leading to increased anti-tumor responses when combined with immunotherapy in both mouse models and human cancers. These findings have significant implications for new therapeutic options that target epigenetic modifiers promoting exhaustion together with immune checkpoint blockade to improve response rates in patients.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-11-26DOI: 10.1158/0008-5472.CAN-24-1609
Hazrat Bilal, Muhammad Nadeem Khan, Sabir Khan, Muhammad Shafiq, Wenjie Fang, Yuebin Zeng, Yangzhong Guo, Xiaohui Li, Bing Zhao, Qiao-Li Lv, Bin Xu
{"title":"Fungal Influences on Cancer Initiation, Progression, and Response to Treatment.","authors":"Hazrat Bilal, Muhammad Nadeem Khan, Sabir Khan, Muhammad Shafiq, Wenjie Fang, Yuebin Zeng, Yangzhong Guo, Xiaohui Li, Bing Zhao, Qiao-Li Lv, Bin Xu","doi":"10.1158/0008-5472.CAN-24-1609","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-1609","url":null,"abstract":"<p><p>Fungal dysbiosis is increasingly recognized as a key factor in cancer, influencing tumor initiation, progression, and treatment outcomes. This review explores the role of fungi in carcinogenesis, with a focus on mechanisms such as immunomodulation, inflammation induction, tumor microenvironment remodeling, and interkingdom interactions. Fungal metabolites are involved in oncogenesis, and antifungals can interact with anticancer drug, including eliciting potential adverse effects and influencing immune responses. Furthermore, mycobiota profiles have potential as diagnostic and prognostic biomarkers, emphasizing their clinical relevance. The interplay between fungi and cancer therapies can impact drug resistance, therapeutic efficacy, and risk of invasive fungal infections associated with targeted therapies. Finally, emerging strategies for modulating mycobiota in cancer care are promising approaches to improve patient outcomes.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-11-26DOI: 10.1158/0008-5472.CAN-24-0397
Jennifer Castro, Matthew H Daniels, David Brennan, Brian Johnston, Deepali Gotur, Young-Tae Lee, Kevin E Knockenhauer, Chuang Lu, Jie Wu, Sunaina Nayak, Cindy Collins, Rishabh Bansal, Shane M Buker, April Case, Julie Liu, Shihua Yao, Brian A Sparling, E Allen Sickmier, Serena J Silver, Stephen J Blakemore, P Ann Boriack-Sjodin, Kenneth W Duncan, Scott Ribich, Robert A Copeland
{"title":"A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair.","authors":"Jennifer Castro, Matthew H Daniels, David Brennan, Brian Johnston, Deepali Gotur, Young-Tae Lee, Kevin E Knockenhauer, Chuang Lu, Jie Wu, Sunaina Nayak, Cindy Collins, Rishabh Bansal, Shane M Buker, April Case, Julie Liu, Shihua Yao, Brian A Sparling, E Allen Sickmier, Serena J Silver, Stephen J Blakemore, P Ann Boriack-Sjodin, Kenneth W Duncan, Scott Ribich, Robert A Copeland","doi":"10.1158/0008-5472.CAN-24-0397","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-0397","url":null,"abstract":"<p><p>DHX9 is a multifunctional DExH-box RNA helicase with important roles in the regulation of transcription, translation, and maintenance of genome stability. Elevated expression of DHX9 is evident in multiple cancer types, including colorectal cancer (CRC). Microsatellite instable-high (MSI-H) tumors with deficient mismatch repair (dMMR) display a strong dependence on DHX9, making this helicase an attractive target for oncology drug discovery. In this report, we show that DHX9 knockdown increased RNA/DNA secondary structures and replication stress, resulting in cell cycle arrest and the onset of apoptosis in cancer cells with MSI-H/dMMR. ATX968 was identified as a potent and selective inhibitor of DHX9 helicase activity. Chemical inhibition of DHX9 enzymatic activity elicited similar selective effects on cell proliferation as seen with genetic knockdown. In addition, ATX968 induced robust and durable responses in an MSI-H/dMMR xenograft model but not in a microsatellite stable (MSS)/proficient mismatch repair (pMMR) model. These preclinical data validate DHX9 as a target for the treatment of patients with MSI-H/dMMR. Additionally, this potent and selective inhibitor of DHX9 provides a valuable tool with which to further explore the effects of inhibition of DHX9 enzymatic activity on the proliferation of cancer cells in vitro and in vivo.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mapping of the T Cell Landscape of Biliary Tract Cancer Unravels Anatomical Subtype-Specific Heterogeneity","authors":"Jianhua Nie, Shuyuan Zhang, Ying Guo, Caiqi Liu, Jiaqi Shi, Haotian Wu, Ruisi Na, Yingjian Liang, Shan Yu, Fei Quan, Kun Liu, Mingwei Li, Meng Zhou, Ying Zhao, Xuehan Li, Shengnan Luo, Qian Zhang, Guangyu Wang, Yanqiao Zhang, Yuanfei Yao, Yun Xiao, Sheng Tai, Tongsen Zheng","doi":"10.1158/0008-5472.can-24-1173","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1173","url":null,"abstract":"Biliary tract cancer (BTC), encompassing diseases such as intrahepatic (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer (GBC), is not only on the rise but also poses a significant and urgent health threat due to its high malignancy. Genomic differences point to the possibility that these subtypes represent distinct diseases. Elucidation of the specific distribution of T cell subsets, critical to cancer immunity, across these diseases could provide better insights into the unique biology of BTC subtypes and help identify potential precision medicine strategies. To address this, we conducted scRNA-seq and scTCR-seq on CD3+ T cells from 36 samples from 16 BTC patients across all subtypes and analyzed 355 pathological slides to examine the spatial distribution of T cells and tertiary lymphoid structures (TLS). Compared to ICC and GBC, ECC possessed a unique immune profile characterized by T cell exhaustion, elevated CXCL13 expression in CD4+ T helper-like and CD8+CXCL13+ exhausted T cells, more mature TLS, and fewer desert immunophenotypes. Conversely, ICC displayed an inflamed immunophenotype with an enrichment of interferon related pathways and high expression of LGALS1 in activated regulatory T cells, associated with immunosuppression. Inhibition of LGALS1 reduced tumor growth and Treg prevalence in ICC mouse models. Overall, this study unveils T cell diversity across BTC subtypes at the single-cell and spatial level that could open paths for tailored immunotherapies.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"71 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PTBP1 Lactylation Promotes Glioma Stem Cell Maintenance through PFKFB4-Driven Glycolysis","authors":"Zijian Zhou, Xianyong Yin, Hao Sun, Jiaze Lu, Yuming Li, Yang Fan, Peiwen Lv, Min Han, Jing Wu, Shengjie Li, Zihao Liu, Hongbo Zhao, Haohan Sun, Hao Fan, Shan Wang, Tao Xin","doi":"10.1158/0008-5472.can-24-1412","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1412","url":null,"abstract":"Longstanding evidence implicates glioma stem cells (GSCs) as the major driver for glioma propagation and recurrence. GSCs have a distinctive metabolic landscape characterized by elevated glycolysis. Lactate accumulation resulting from enhanced glycolytic activity can drive lysine lactylation to regulate protein functions, suggesting that elucidating the lactylation landscape in GSCs could provide insights into glioma biology. Herein, we demonstrated that global lactylation was significantly elevated in GSCs compared to differentiated glioma cells (DGCs). PTBP1, a central regulator of RNA processing, was hyperlactylated in GSCs, and SIRT1 induced PTBP1 delactylation. PTBP1-K436 lactylation supported glioma progression and GSC maintenance. Mechanistically, K436 lactylation inhibited PTBP1 proteasomal degradation by attenuating the interaction with TRIM21. Moreover, PTBP1 lactylation enhanced its RNA-binding capacity and facilitated PFKFB4 mRNA stabilization, which further increased glycolysis. Together, these findings uncovered a lactylation-mediated mechanism in GSCs driven by metabolic reprogramming that induces aberrant epigenetic modifications to further stimulate glycolysis, resulting in a vicious cycle to exacerbate tumorigenesis.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"15 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-11-21DOI: 10.1158/0008-5472.can-24-3041
Sylvia L. Crowder, Lisa M. Gudenkauf, Aasha I. Hoogland, Hyo S. Han, Brent J. Small, Tiffany L. Carson, Nathan H. Parker, Margaret Booth-Jones, Heather S.L. Jim
{"title":"Cancer-Related Cognitive Impairment and the Potential of Dietary Interventions for the Prevention and Mitigation of Neurodegeneration","authors":"Sylvia L. Crowder, Lisa M. Gudenkauf, Aasha I. Hoogland, Hyo S. Han, Brent J. Small, Tiffany L. Carson, Nathan H. Parker, Margaret Booth-Jones, Heather S.L. Jim","doi":"10.1158/0008-5472.can-24-3041","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-3041","url":null,"abstract":"Approximately 35% of long-term cancer survivors experience ongoing cancer-related cognitive impairment (CRCI). Yet, few efficacious interventions exist to prevent or ameliorate CRCI. The underlying biological processes driving CRCI are complex and are reported to include changes in brain structure and function, increased oxidative stress and inflammation, and alterations in gut microbiome composition. Some of the mechanisms promoting CRCI have the potential to be modified through behavioral changes, such as dietary changes. Compelling evidence from randomized controlled trials and observational research supports the positive impacts of the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet on cognition outside of the context of cancer, but studies investigating the MIND diet as an intervention for people who experience CRCI are lacking. This review examines the current state of the science for cognitive outcomes of dietary interventions in aging populations and discusses future opportunities to adapt these interventions to cancer populations.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"46 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer researchPub Date : 2024-11-21DOI: 10.1158/0008-5472.can-24-4381
Huiru Bai, Shang Cai
{"title":"Midkine at the Crossroads of Aging and Cancer","authors":"Huiru Bai, Shang Cai","doi":"10.1158/0008-5472.can-24-4381","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-4381","url":null,"abstract":"Aging in mammals, including humans, is marked by a multitude of molecular, cellular, and systemic changes that increase the risk of various diseases, including cancer. While the link between aging and increased cancer incidence is well documented, the precise biological mechanisms driving tumor initiation remain less clear. In a recent issue of Cancer Cell, Yan and colleagues have identified Midkine, a heparin-binding growth factor, as an age-related biomarker mediating both ageing related phenotypes and cancer development. Further exploration of these molecular dynamics, alongside the development of targeted drugs, holds great promise for reducing aging-related cancer incidence.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"16 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-omics Analysis Reveals Molecular Changes During Early Progression of Precancerous Lesions to Lung Adenocarcinoma in Never-Smokers","authors":"Yun-Ching Chen, Chia-Lang Hsu, Hui-Min Wang, Shang-Gin Wu, Yih-Leong Chang, Jin-Shing Chen, Yu-Ching Wu, Yen-Ting Lin, Ching-Yao Yang, Mong-Wei Lin, Jang-Ming Lee, Shuenn-Wen Kuo, Ke-Cheng Chen, Hsao-Hsun Hsu, Pei-Ming Huang, Yen-Lin Huang, Chong-Jen Yu, Mehdi Pirooznia, Bevan E. Huang, Rob Yang, Jin-Yuan Shih, Pan-Chyr Yang","doi":"10.1158/0008-5472.can-24-0821","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-0821","url":null,"abstract":"Lung cancer is the most common cause of cancer mortality globally, and the prevalence of lung adenocarcinoma (LUAD), the most common lung cancer subtype, has increased sharply in East Asia. Early diagnosis leads to better survival rates, but this requires an improved understanding of the molecular changes during early tumorigenesis, particularly in non-smokers. Here, we performed whole exome-sequencing and RNA-sequencing of samples from 94 East Asian patients with precancerous lesions (25 with atypical adenomatous hyperplasia [AAH]; 69 with adenocarcinoma in situ [AIS]) and 73 patients with early invasive lesions (minimally invasive adenocarcinoma [MIA]). Cellular analysis revealed that the activities of endothelial and stromal cells could be used to categorize tumors into molecular subtypes within pathologically defined types of lesions. The subtypes were linked with the radiologically defined type of lesions and corresponded to immune cell infiltration throughout the early progression of LUAD. Spatial transcriptomic analysis revealed the distribution of epithelial cells, endothelial cells, fibroblasts, and plasma cells within MIA samples. Characterization of the molecular lesion subtypes identified positively selected mutational patterns and suggested that angiogenesis in the late-stage AIS type potentially contributes to tissue invasion of the MIA type. This study offers a resource that may help to improve early diagnosis and patient prognosis, and the findings suggest possible approaches for early disease interception.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"11 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}