Rushi Gong, Shun-Li Shang, Yi Wang, Jorge Paz Soldan Palma, Hojong Kim, Zi-Kui Liu
{"title":"Revisiting thermodynamics in (LiF, NaF, KF, CrF2)–CrF3 by first-principles calculations and CALPHAD modeling","authors":"Rushi Gong, Shun-Li Shang, Yi Wang, Jorge Paz Soldan Palma, Hojong Kim, Zi-Kui Liu","doi":"10.1016/j.calphad.2024.102703","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102703","url":null,"abstract":"<div><p>The thermodynamic description of the (LiF, NaF, KF, CrF<sub>2</sub>)–CrF<sub>3</sub> systems has been revisited, aiming for a better understanding of the effects of Cr on the FLiNaK molten salt. First-principles calculations based on density functional theory (DFT) were performed to determine the electronic and structural properties of each compound, including the formation enthalpy, volume, and bulk modulus. DFT-based phonon calculations were carried out to determine the thermodynamic properties of compounds, for example, enthalpy, entropy, and heat capacity as functions of temperature. Phonon-based thermodynamic properties show a good agreement with experimental data of binary compounds LiF, NaF, KF, CrF<sub>3</sub>, and CrF<sub>2</sub>, establishing a solid foundation to determine thermodynamic properties of ternary compounds as well as to verify results estimated by the Neumann-Kopp rule. Additionally, DFT-based ab initio molecular dynamics (AIMD) simulations were employed to predict the mixing enthalpies of liquid salts. Using DFT-based results and experimental data in the literature, the (LiF, NaF, KF, CrF<sub>2</sub>)–CrF<sub>3</sub> system has been remodeled in terms of the CALculation of PHAse Diagrams (CALPHAD) approach using the modified quasichemical model with quadruplet approximation (MQMQA) for liquid. Calculated phase stability in the present work shows an excellent agreement with experiments, indicating the effectiveness of combining DFT-based total energy, phonon, and AIMD calculations, and CALPHAD modeling to provide the thermodynamic description in complex molten salt systems.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fu-Ling Chang, Yu-Hsin Lin, Han-Tang Hung, C.R. Kao
{"title":"Experimental and thermodynamic assessment of the Cu–In system","authors":"Fu-Ling Chang, Yu-Hsin Lin, Han-Tang Hung, C.R. Kao","doi":"10.1016/j.calphad.2024.102700","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102700","url":null,"abstract":"<div><p>Owing to the low melting temperature and excellent mechanical properties, In is considered a potential low-temperature solder. However, the interfacial reaction between In and Cu substrates is still unclear, specifically regarding the stability of CuIn<sub>2</sub>. Although CuIn<sub>2</sub> was often observed at the Cu–In thin film after long-term aging below 100 °C, it is considered as a metastable phase and has not been added into the Cu–In phase diagram yet. In this study, the stability of CuIn<sub>2</sub> and the peritectoid reaction Cu<sub>11</sub>In<sub>9</sub> + In → CuIn<sub>2</sub> were established using the Cu/In diffusion couple, Cu–In alloy phase equilibria, and decomposition investigation of CuIn<sub>2</sub>. The peritectoid temperature was determined to be in the range of 110–105 °C. Finally, thermodynamic assessment was conducted based on the experimental data and the revised Cu–In phase diagram.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karoline Elerbrock Borowski , Vitória de Melo Silveira , Nabil Chaia , Chuangye Wang , Ji-Cheng Zhao , Carlos Angelo Nunes , Gilberto Carvalho Coelho
{"title":"Diffusion coefficients and atomic mobilities in the BCC phase of the Al–Nb–V system","authors":"Karoline Elerbrock Borowski , Vitória de Melo Silveira , Nabil Chaia , Chuangye Wang , Ji-Cheng Zhao , Carlos Angelo Nunes , Gilberto Carvalho Coelho","doi":"10.1016/j.calphad.2024.102699","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102699","url":null,"abstract":"<div><p>Diffusion coefficients in the BCC phase of the Al–Nb–V ternary system are studied for the first time, including an assessment of the atomic mobilities. Ternary interdiffusion coefficients are obtained from the intersecting diffusion paths of several sets of diffusion couples that are annealed at both 1100 °C and 1200 °C. Existing experimental data from the pertinent binary systems are also employed for the assessments of atomic mobilities using the 1-parameter Z-Z-Z binary diffusion coefficient model developed by Zhong et al [1]. Interdiffusion coefficients in the BCC region of the Al–V system are also extracted through a forward-simulation analysis and incorporated into the mobility modeling. A complete description of diffusion in the BCC phase of the Al–Nb–V system is presented following the Binary and Cross-Binary Parameters Only (BCBPO) model developed by Zhong and Zhao [2]. Our data will be valuable input to diffusion-related simulation of refractory high entropy alloys containing aluminum.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqiang Yu , Hongyu Zhang , Jing Zhong , Boliang Liu , Libin Liu , Ligang Zhang
{"title":"Interdiffusion in BCC_B2 Ni–Ti–V alloys at 1223K–1323K","authors":"Zhiqiang Yu , Hongyu Zhang , Jing Zhong , Boliang Liu , Libin Liu , Ligang Zhang","doi":"10.1016/j.calphad.2024.102697","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102697","url":null,"abstract":"<div><p>Establishing a Ni–Ti–V system diffusion kinetics database contributes to a better understanding of the precipitation processes in shape memory alloys. In this paper, eleven sets of BCC_B2 Ni–Ti–V single-phase diffusion couples were prepared and annealed at temperatures of 1223 K, 1273 K, and 1323 K. The composition-distance curves were determined using the electron probe microstructure analysis technique. The interdiffusion coefficients were extracted using the HitDIC software, which is based on the numerical inverse method. The software demonstrated high accuracy in predicting the composition curves of the prepared diffusion couples. The interdiffusion coefficients inferred from the HitDIC software and the ones calculated by the Matano-Kirkaldy method achieved good agreement. This demonstrates the reliability and rationality of the evaluated interdiffusion coefficients. This study also investigated the composition and temperature dependencies of interdiffusion coefficients.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of ZrO2 on the phase relations for CaO-SiO2-TiO2 system related to efficient extraction of titanium from titania-bearing slag","authors":"Ningning Lv , Yuchao Qiu , Junjie Shi , Chang Su","doi":"10.1016/j.calphad.2024.102698","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102698","url":null,"abstract":"<div><p>The selective crystallization and phase separation process has been regarded as a promising process for the recycling of titanium from titania-bearing furnace slag, however, the composition modification mechanism still remains unclear due to the lack of fundamental thermodynamic data. In the present work, the influence of ZrO<sub>2</sub> addition on the equilibrium phase relations and the 1400 °C isotherm for CaO-SiO<sub>2</sub>-TiO<sub>2</sub> system were experimentally determined by using the high temperature equilibration-quenching technique, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry, and X-ray diffraction analysis. The equilibrium solid phases of rutile (TiO<sub>2</sub>), perovskite (CaTiO<sub>3</sub>), and tridymite (SiO<sub>2</sub>) are determined to be coexisting with the liquid phase. In addition, comparisons of present results with thermodynamic calculation by FactSage show significant discrepancies. The present work is important for enriching the thermodynamic database of titania-bearing slag oxide systems as well as optimizing the selective crystallization and phase separation process.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges in determining individual chemical potentials of system elements by Gibbs energy minimization","authors":"Kazuhisa Shobu","doi":"10.1016/j.calphad.2024.102691","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102691","url":null,"abstract":"<div><p>Accounting for the elusive gas phase in thermodynamic equilibrium calculations is demonstrated to be important for achieving accurate and unique determination of constituent element chemical potentials, when Gibbs energy minimization (GEM) encounter indeterminacy due to rank deficiency in mass-balance equations. The molar GEM of the equilibrium vapor phase offers a robust solution for unambiguously and accurately determining element chemical potentials. To enable this, a novel optimization method for mass-balance equation is presented, paving the way for reliable thermodynamic calculations.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140646745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Fartushna , M. Bega , N. Novychenko , M. Bulanova
{"title":"Phase equilibria in the Al–Fe–Mo system","authors":"I. Fartushna , M. Bega , N. Novychenko , M. Bulanova","doi":"10.1016/j.calphad.2024.102693","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102693","url":null,"abstract":"<div><p>This paper presents the results of our comprehensive study of phase equilibria in the Al–Fe–Mo system using DTA, X-ray diffraction, SEM and electron probe microanalysis. The liquidus and solidus projections were constructed. It is shown that the ternary compound Al<sub>8</sub>FeMo<sub>3</sub> (τ) melts congruently at >1500 °C and has a homogeneity range from 2 to 9 at.% Fe and from 23.5 to 25 at.% Mo. Isostructural phases (Mo), (αFe) and AlMo (W-type structure, <em>cI</em>2<em>-Im-</em>3<em>m</em>) at solidus temperatures form a continuous solid solution (αFe,Mo,AlMo). Unlike the AlMo binary phase, which is not retained by quenching, the ternary (αFe,Mo,AlMo) phase is easily quenched due to its lower decomposition temperature. Among the binary based phases, the Al<sub>8</sub>Fe<sub>5</sub> (ε) phase has the widest homogeneity region, which extends up to 24 at.% Mo at solidus temperatures. It is shown that the addition of Mo stabilizes the Al<sub>8</sub>Fe<sub>5</sub> (ε) phase, and the temperature of its formation in the ternary system increases to 1331 °C in contrast to 1234 °C in the binary. Moreover, according to XRD data, the Al<sub>8</sub>Fe<sub>5</sub> (ε) phase in the ternary system has a rhombohedral structure of the Al<sub>8</sub>Cr<sub>5</sub>-type (<em>hR</em>78-<em>R</em>-3m), rather than cubic Cu<sub>5</sub>Zn<sub>8</sub>-type structure (<em>cI</em>52-<em>I</em>-43<em>m</em>), like the binary one. A new binary compound Al<sub>45</sub>Mo<sub>7</sub> was identified for the first time. Its crystal structure is established as monoclinic Al<sub>45</sub>V<sub>7</sub>-type (<em>mS</em>104-<em>C</em>2/<em>m</em>) with the lattice parameters <em>a = 20.534, b = 7.561, c = 10.910 Å, β = 107.33</em>. It was shown to form by peritectic reaction L + Al<sub>5</sub>Mo ⇄ Al<sub>45</sub>Mo<sub>7</sub> at ∼800 °C. Iron additions stabilize the Al<sub>4</sub>Mo phase, which in the binary system is stable above 942 °C.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigation and thermodynamic description of the Co–Mo–Ta system","authors":"Yu Shi, Cuiping Guo, Changrong Li, Zhenmin Du","doi":"10.1016/j.calphad.2024.102694","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102694","url":null,"abstract":"<div><p>38 annealed and 30 as-cast alloys were investigated to construct the isothermal sections at 1273 and 1473 K and the liquidus surface projection of the Co–Mo–Ta system by SEM/EDS and XRD methods. The three-phase regions Co<sub>3</sub>Mo+λ<sub>3</sub>+μ and fcc(Co) + Co<sub>3</sub>Mo+λ<sub>3</sub> at 1273 K, and the three-phase region fcc(Co)+λ<sub>3</sub>+μ at 1473 K, were determined. In the liquidus surface projection, eight primary solidification phase regions, fcc(Co), bcc(Mo, Ta), σ, μ, λ<sub>1</sub>, λ<sub>2</sub>, λ<sub>3</sub> and CoTa<sub>2</sub>, and five invariant reactions, liq.→fcc(Co)+λ<sub>3</sub>+μ, liq.→λ<sub>1</sub>+λ<sub>3</sub>+μ, liq.+λ<sub>2</sub>→λ<sub>1</sub>+λ<sub>3</sub>, liq.+CoTa<sub>2</sub>→μ+bcc(Mo, Ta) and liq.+bcc(Mo, Ta)+σ→μ, were obtained. On the basis of the experimental results, the Co–Mo–Ta system was evaluated to obtain a set of self-consistent thermodynamic parameters by CALPHAD method.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140621127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanbin Kang , Zhao Lu , Haiqing Qin , Lin Zhao , Rui Zhang , Jinguo Ge , Qingrong Yao , Caimin Huang , Zhiwei Wei , Qianxin Long , Jiang Wang , Huaiying Zhou
{"title":"Experimental investigations and thermodynamic assessment of the Al–Er–Sc system","authors":"Yanbin Kang , Zhao Lu , Haiqing Qin , Lin Zhao , Rui Zhang , Jinguo Ge , Qingrong Yao , Caimin Huang , Zhiwei Wei , Qianxin Long , Jiang Wang , Huaiying Zhou","doi":"10.1016/j.calphad.2024.102689","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102689","url":null,"abstract":"<div><p>The thermodynamic evaluation of the Er–Sc binary system was performed using the Calphad method, computing thermodynamic parameters for the Liquid phase, Hcp phase, and Bcc phase. The calculated results align well with existing experimental phase diagrams. Furthermore, by employing electron probe microanalysis and X-ray diffraction testing, the phase equilibria for the Al–Er-Sc ternary system at 600 °C were determined. Experimental findings indicated that both Al–Er and Al–Sc binary systems exhibit some solubility for the third component when extended to the ternary system. Leveraging thermodynamic parameters from the literature for Al–Er and Al–Sc binary system and those calculated for the Er–Sc binary system in this work, a comprehensive thermodynamic evaluation of the Al–Er-Sc ternary system is carried out. The computed results exhibit good agreement with the experimental data, providing consistent and reasonable thermodynamic parameters for the isothermal and vertical sections.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic assessment of the Ni–Co-Re system and diffusion study of its fcc phase","authors":"Zhongwen Shi , Genfeng Shang , Xiao-Gang Lu","doi":"10.1016/j.calphad.2024.102688","DOIUrl":"https://doi.org/10.1016/j.calphad.2024.102688","url":null,"abstract":"<div><p>In the present work, the first-principles calculations were performed to study the enthalpies of mixing and the magnetic moments of the solid solutions in the Ni–Re and Co–Re systems. Meanwhile, the phase equilibria of the binary Ni–Re, Co–Re and ternary Ni–Co-Re alloys were investigated using equilibrated alloys and diffusion couples. Various types of data from the present work as well as the literature were used to perform a thermodynamic assessment of the ternary Ni–Co-Re and sub-binary systems using the CALPHAD method. Based on the present thermodynamic parameters, the atomic mobilities for the fcc phase in the Ni–Re and Co–Re systems were reassessed to reproduce experimental data in the literature. Furthermore, several ternary Ni–Co-Re diffusion couples were assembled and annealed at 1273 K and 1473 K to deduce the interdiffusion coefficients. On the basis of diffusion experimental data from the present work and the literature, atomic mobilities of Ni, Co, and Re in the fcc Ni–Co-Re system were assessed coupled with the present thermodynamic description. The accuracy of the assessed atomic mobilities was confirmed by comparing with the experimental interdiffusion coefficients, composition profiles and diffusion paths.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}