Soil & Environmental Health最新文献

筛选
英文 中文
Unique biogeochemical characteristics in coastal ghost forests – The transition from freshwater forested wetland to salt marsh under the influences of sea level rise 沿海幽灵林独特的生物地球化学特征——海平面上升影响下淡水森林湿地向盐沼的转变
Soil & Environmental Health Pub Date : 2023-03-01 DOI: 10.1016/j.seh.2023.100005
Huan Chen , Alexander Martin Rücker , Yina Liu , David Miller , Jia-Ning Dai , Jun-Jian Wang , Dennis O. Suhre , Li-Jung Kuo , William H. Conner , Barbara J. Campbell , Robert C. Rhew , Alex T. Chow
{"title":"Unique biogeochemical characteristics in coastal ghost forests – The transition from freshwater forested wetland to salt marsh under the influences of sea level rise","authors":"Huan Chen ,&nbsp;Alexander Martin Rücker ,&nbsp;Yina Liu ,&nbsp;David Miller ,&nbsp;Jia-Ning Dai ,&nbsp;Jun-Jian Wang ,&nbsp;Dennis O. Suhre ,&nbsp;Li-Jung Kuo ,&nbsp;William H. Conner ,&nbsp;Barbara J. Campbell ,&nbsp;Robert C. Rhew ,&nbsp;Alex T. Chow","doi":"10.1016/j.seh.2023.100005","DOIUrl":"https://doi.org/10.1016/j.seh.2023.100005","url":null,"abstract":"<div><p>Seawater intrusion by rising sea levels has created large areas of ghost forests along low-lying coastal wetlands in the southeastern USA, but more information is needed to better understand its soil biogeochemistry. Here, we characterized several soil and environmental parameters, including tree litterfall, surface and soil porewater quality, emissions of greenhouse gases, and microbial communities along a forest-to-marsh transect, including a freshwater forested wetland, a salt-impacted degraded ghost forest, and a salt marsh in Winyah Bay, SC, USA. General water quality parameters such as electrical conductivity, dissolved oxygen, temperature and aboveground productivity showed distinct trends along the freshwater forested wetland → degraded ghost forest → salt marsh transect, whereas there were no obvious trends in soil biogeochemical parameters. Concentrations of dissolved organic carbon (DOC) in the degraded ghost forest were generally similar to the freshwater forested wetland, but on average were higher than those in the salt marsh. More labile molecular features observed through Fourier transform ion cyclotron resonance mass spectrometry indicated an increase in the DOC biodegradability along the forest-to-marsh transect. Greater DOC biodegradability in the degraded ghost forest was observed and confirmed through its generation of the highest average electrical currents from sediment microbial fuel cells. The lowest CH<sub>4</sub> and CO<sub>2</sub> fluxes, but the highest degradable DOC, were observed in the degraded ghost forest, suggesting that lateral C export is important in this wetland. Moreover, the degraded ghost forest was dominated by a unique microbial community, including high abundance of Woesearchaeia, which enables carbon metabolism via symbiotic and/or fermentation-based lifestyles. Our study illustrates a ghost forest with very different characteristics compared to its parental freshwater forested wetland and its transitioned salt marsh. Data obtained from the two endmember ecosystems along the salinity gradient transect were not useful in predicting the unique biogeochemical processes in the degraded ghost forest.</p></div>","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49880276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Importance and inconsistencies of the influence of soil properties on nitrogen mineralization: a systematic review 土壤性质对氮矿化影响的重要性和不一致性:系统综述
Soil & Environmental Health Pub Date : 2023-01-01 DOI: 10.20517/sh.2022.02
Gabriela Mendoza-Carreón, J. P. Flores-Márgez, Pedro Osuna-Ávila, S. Sanogo
{"title":"Importance and inconsistencies of the influence of soil properties on nitrogen mineralization: a systematic review","authors":"Gabriela Mendoza-Carreón, J. P. Flores-Márgez, Pedro Osuna-Ávila, S. Sanogo","doi":"10.20517/sh.2022.02","DOIUrl":"https://doi.org/10.20517/sh.2022.02","url":null,"abstract":"Climate and soil properties profoundly impact N mineralization (Nmin). Hence, there is a critical need to identify how physical-chemical-biological factors involved in organic matter decomposition influence globally reported predictive models. This paper reflects research focused on those factors considered relevant and used during the construction of Nmin models. The literature data found on factors affecting Nmin or N availability in soils published since 1990 was downloaded to a database in Access. Using different bivariate and multivariate statistical techniques, we compiled results of 785 statistical analyses presented by authors of 90 research articles that related Nmin and environmental factors, management strategies, and soil biological and physicochemical attributes. For organization purposes, we decided to group results according to the similarity of properties related to mineralization into environmental factors (18.6%), ecosystem/vegetation (14.52%), management (7.64%), soil physicochemical properties (34.65%), organic matter (16.05%), and microbiota (6.37%). The measurements of the response variables were 16.2% using N content in soil (as ammonium, nitrates, Organic N and Total N), and 83.88% represent N in the process of mineralization, including potentially mineralized N. As Nmin is the dependent variable, the results included 109 independent variables, of which 47.7% presented seemingly inconsistent results, which means different effects in Nmin. The difference in results was found to be related mostly to a difference in ecosystems or variable interactions. We conclude that acquiring a general prediction model for Nmin or constructing a specific equation for local conditions poses a limitation to optimizing N management for crop production. A more useful strategy is to generate a prediction model for Nmin, including significative soil and weather conditions, within a region and ecosystem; thus, the information can support soil and crop management decisions.","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72639271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil Health 土壤健康
Soil & Environmental Health Pub Date : 2020-01-01 DOI: 10.1007/978-3-030-44364-1
图雅 道仁
{"title":"Soil Health","authors":"图雅 道仁","doi":"10.1007/978-3-030-44364-1","DOIUrl":"https://doi.org/10.1007/978-3-030-44364-1","url":null,"abstract":"","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76836432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 88
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信