Canada communicable disease report = Releve des maladies transmissibles au Canada最新文献

筛选
英文 中文
National Influenza Annual Report, Canada, 2021-2022: A brief, late influenza epidemic. 加拿大 2021-2022 年全国流感年度报告:短暂的后期流感流行。
Steven Buckrell, Myriam Ben Moussa, Tammy Bui, Abbas Rahal, Kara Schmidt, Liza Lee, Nathalie Bastien, Christina Bancej
{"title":"National Influenza Annual Report, Canada, 2021-2022: A brief, late influenza epidemic.","authors":"Steven Buckrell, Myriam Ben Moussa, Tammy Bui, Abbas Rahal, Kara Schmidt, Liza Lee, Nathalie Bastien, Christina Bancej","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Canadian seasonal influenza circulation had been suppressed since the beginning of the coronavirus disease 2019 (COVID-19) pandemic. This suppression was reported globally and generated concern that the return of community influenza circulation could be intense and that co-circulation of influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was possible and potentially severe. Community circulation of influenza returned to Canada during the 2021-2022 influenza season. The influenza epidemic began in week 16 (mid-April 2022) and lasted only nine weeks. This epidemic was driven by influenza A(H3N2) and was exceptionally late in the season, low in intensity and short in length. Community co-circulation of influenza and SARS-CoV-2 was observed in Canada for the first time during the 2021-2022 seasonal influenza epidemic. The unusual characteristics of the 2021-2022 influenza epidemic suggest that a breadth of factors moderate transmission dynamics of the two viruses. Concerns of an intense seasonal influenza epidemic did not come to fruition during the 2021-2022 season; therefore, high influenza susceptibility remains, as does predisposition to larger influenza epidemics. Ongoing circulation of SARS-CoV-2 creates uncertainty about dynamics of future influenza epidemics, but influenza vaccination remains a key public health intervention available to protect Canadians. Public health authorities need to remain vigilant, maintain surveillance and continue to plan for both heightened seasonal influenza circulation and for the potential for endemic co-circulation of influenza and SARS-CoV-2.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 10","pages":"473-483"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of non-pharmaceutical interventions to reduce SARS-CoV-2 transmission in Canada and their association with COVID-19 hospitalization rates. 加拿大减少 SARS-CoV-2 传播的非药物干预措施的效果及其与 COVID-19 住院率的关系。
Erin E Rees, Brent P Avery, Hélène Carabin, Carolee A Carson, David Champredon, Simon de Montigny, Brendan Dougherty, Bouchra R Nasri, Nicholas H Ogden
{"title":"Effectiveness of non-pharmaceutical interventions to reduce SARS-CoV-2 transmission in Canada and their association with COVID-19 hospitalization rates.","authors":"Erin E Rees, Brent P Avery, Hélène Carabin, Carolee A Carson, David Champredon, Simon de Montigny, Brendan Dougherty, Bouchra R Nasri, Nicholas H Ogden","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Non-pharmaceutical interventions (NPIs) aim to reduce the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections mostly by limiting contacts between people where virus transmission can occur. However, NPIs limit social interactions and have negative impacts on economic, physical, mental and social well-being. It is, therefore, important to assess the impact of NPIs on reducing the number of coronavirus disease 2019 (COVID-19) cases and hospitalizations to justify their use.</p><p><strong>Methods: </strong>Dynamic regression models accounting for autocorrelation in time series data were used with data from six Canadian provinces (British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Québec) to assess 1) the effect of NPIs (measured using a stringency index) on SARS-CoV-2 transmission (measured by the effective reproduction number), and 2) the effect of the number of hospitalized COVID-19 patients on the stringency index.</p><p><strong>Results: </strong>Increasing stringency index was associated with a statistically significant decrease in the transmission of SARS-CoV-2 in Alberta, Saskatchewan, Manitoba, Ontario and Québec. The effect of stringency on transmission was time-lagged in all of these provinces except for Ontario. In all provinces except for Saskatchewan, increasing hospitalization rates were associated with a statistically significant increase in the stringency index. The effect of hospitalization on stringency was time-lagged.</p><p><strong>Conclusion: </strong>These results suggest that NPIs have been effective in Canadian provinces, and that their implementation has been, in part, a response to increasing hospitalization rates of COVID-19 patients.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 10","pages":"438-448"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139072530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summary of an environmental scan of HIV and Hepatitis C programs, projects and initiatives in Saskatchewan. 萨斯喀彻温省艾滋病毒和丙型肝炎计划、项目和倡议的环境扫描摘要。
Meghana Cheekireddy, Claudia Madampage, Chad Hammond, Linda Chelico, Alexandra King
{"title":"Summary of an environmental scan of HIV and Hepatitis C programs, projects and initiatives in Saskatchewan.","authors":"Meghana Cheekireddy, Claudia Madampage, Chad Hammond, Linda Chelico, Alexandra King","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>In 2019, the human immunodeficiency virus (HIV) and hepatitis C (HCV) diagnosis rates in Saskatchewan (SK) were approximately twice the national rate. To address these high levels, Saskatchewan Stories, a community-based digital database, was developed to make information on Saskatchewan-based HIV and HCV programs, projects and initiatives (PPI) centrally and freely available. To begin populating this database, we conducted an environmental scan representing HIV and HCV PPI from January 1, 1980 to May 31, 2020.</p><p><strong>Methods: </strong>MedLine, ERIC, ProQuest One Literature, Public Health Information database, SCOPUS and CINAHL were searched for both HIV and HCV articles. In addition, Bibliography of Native North Americans was searched for HIV and EMBSE (Ovid) and Indigenous studies portal (iPortal) were searched for HCV articles. Google Canada, Government of Saskatchewan, and Government of Canada websites were also searched.</p><p><strong>Results: </strong>In total, 139 HIV-specific PPI and 29 HCV-specific PPI were found in the environmental scan (n=168). Among HIV PPI, 27% (n=38) were from academic literature while 73% (n=101) were from grey literature. Among HCV PPI, 41% (n=12) were from academic literature, while 59% (n=17) were from grey literature. HIV accounted for 83% of total PPI, compared to 17% for HCV.</p><p><strong>Conclusion: </strong>This environmental scan is an important contribution to evidence-based practice and research in SK. It is particularly useful for organizations, researchers, policymakers and people living with HIV/HCV to develop new evidence-based PPI, to secure funding for PPI and to support individuals and communities in SK affected by HIV and HCV.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 10","pages":"424-428"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invasive group A streptococcal disease surveillance in Canada, 2020. 2020 年加拿大侵袭性 A 群链球菌疾病监测。
Alyssa Golden, Averil Griffith, Walter Demczuk, Gregory Tyrrell, Julianne Kus, Allison McGeer, Marc-Christian Domingo, Linda Hoang, Jessica Minion, Paul Van Caeseele, Hanan Smadi, David Haldane, George Zahariadis, Kristen Mead, Laura Steven, Lori Strudwick, Anita Li, Michael Mulvey, Irene Martin
{"title":"Invasive group A streptococcal disease surveillance in Canada, 2020.","authors":"Alyssa Golden, Averil Griffith, Walter Demczuk, Gregory Tyrrell, Julianne Kus, Allison McGeer, Marc-Christian Domingo, Linda Hoang, Jessica Minion, Paul Van Caeseele, Hanan Smadi, David Haldane, George Zahariadis, Kristen Mead, Laura Steven, Lori Strudwick, Anita Li, Michael Mulvey, Irene Martin","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Invasive group A streptococcal (iGAS) disease (caused by <i>Streptococcus pyogenes</i>) has been a nationally notifiable disease in Canada since 2000. This report summarizes the demographics, <i>emm</i> types and antimicrobial resistance of iGAS infections in Canada in 2020.</p><p><strong>Methods: </strong>The Public Health Agency of Canada's National Microbiology Laboratory (Winnipeg, Manitoba) collaborates with provincial and territorial public health laboratories to conduct national surveillance of invasive <i>S. pyogenes. Emm</i> typing was performed on all isolates using the Centers for Disease Control and Prevention <i>emm</i> sequencing protocol. Antimicrobial susceptibilities were determined using Kirby-Bauer disk diffusion according to Clinical and Laboratory Standards Institute guidelines. Population-based iGAS disease incidence rates up to 2019 were obtained through the Canadian Notifiable Disease Surveillance System.</p><p><strong>Results: </strong>Overall, the incidence of iGAS disease in Canada has increased from 4.0 to 8.1 cases per 100,000 population from 2009 to 2019. The 2019 incidence represents a slight decrease from the 2018 rate of 8.6 cases per 100,000 population. A total of 2,867 invasive <i>S. pyogenes</i> isolates that were collected during 2020 are included in this report, representing a decrease from 2019 (n=3,194). The most common <i>emm</i> types in 2020 were <i>emm</i>49 (16.8%, n=483) and <i>emm</i>76 (15.0%, n=429), both increasing significantly in prevalence since 2016 (<i>p</i><0.001). The former most prevalent type, <i>emm</i>1, decreased to 7.6% (n=217) in 2020 from 15.4% (n=325) in 2016. Antimicrobial resistance rates in 2020 included 11.5% resistance to erythromycin, 3.2% resistance to clindamycin and 1.6% nonsusceptibility to chloramphenicol.</p><p><strong>Conclusion: </strong>Though the number of collected invasive <i>S. pyogenes</i> isolates decreased slightly in 2020 in comparison to previous years, iGAS disease remains an important public health concern. The <i>emm</i> distribution in Canada has been subtly shifting over the past five years, away from common and well-known <i>emm</i>1 and towards <i>emm</i>49 and <i>emm</i>76. It is important to continue surveillance of <i>S. pyogenes</i> in Canada to monitor expanding replacement <i>emm</i> types, as well as outbreak clones and antimicrobial resistance.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 9","pages":"407-414"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-person learning low risk for COVID-19 acquisition: Findings from a population-based analysis of the 2020-2021 school year in Saskatchewan, Canada. 人际交往学习是感染 COVID-19 的低风险因素:加拿大萨斯喀彻温省 2020-2021 学年人口分析结果。
Molly Trecker, Leanne McLean, Stephanie Konrad, Dharma Yalamanchili, Kristi Langhorst, Maureen Anderson
{"title":"In-person learning low risk for COVID-19 acquisition: Findings from a population-based analysis of the 2020-2021 school year in Saskatchewan, Canada.","authors":"Molly Trecker, Leanne McLean, Stephanie Konrad, Dharma Yalamanchili, Kristi Langhorst, Maureen Anderson","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>The coronavirus disease 2019 (COVID-19) pandemic has caused substantial disruption to in-person learning, often interfering with the social and educational experience of children and youth across North America, and frequently impacting the greater community by limiting the ability of parents and caregivers to work outside the home. Real-world evidence related to the risk of COVID-19 transmission in school settings can help inform decisions around initiating, continuing, or suspending in-person learning.</p><p><strong>Methods: </strong>We analyzed routinely collected case-based surveillance data from Saskatchewan's electronic integrated public health system, Panorama, from the 2020-2021 school year, spanning various phases of the pandemic (including the Alpha variant wave), to better understand the risk of in-school transmission of COVID-19 in Saskatchewan schools.</p><p><strong>Results: </strong>The majority (over 80%) of school-associated COVID-19 infections were acquired outside the school setting. This finding suggests that the non-pharmaceutical measures in place (including masking, distancing, enhanced hygiene, and cohorting) worked to limit viral spread in schools.</p><p><strong>Conclusion: </strong>Implementation of such control measures may play an essential role in allowing children and youth to safely maintain in-person learning during the pandemic.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 9","pages":"415-419"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summary of the National Advisory Committee on Immunization (NACI) Supplemental Statement on Recombinant Influenza Vaccines. 国家免疫咨询委员会(NACI)关于重组流感疫苗的补充声明摘要。
Anabel Gil, Angela Sinilaite, Jesse Papenburg
{"title":"Summary of the National Advisory Committee on Immunization (NACI) Supplemental Statement on Recombinant Influenza Vaccines.","authors":"Anabel Gil, Angela Sinilaite, Jesse Papenburg","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Recombinant protein technology is a novel platform for influenza vaccine manufacturing that differs significantly from existing egg-based and mammalian cell culture-based technologies. Supemtek™ is the first and, to date, the only recombinant quadrivalent influenza vaccine (RIV4) authorized for use in Canada in adults aged 18 years and older. The objective is to review the available evidence for efficacy, effectiveness, immunogenicity and safety of RIV4, and to summarize the National Advisory Committee on Immunization (NACI) recommendation regarding the use of Supemtek.</p><p><strong>Methods: </strong>A systematic literature review and meta-analysis on the vaccine efficacy, effectiveness, immunogenicity and safety of RIV4 in adults was conducted according to methodology specified <i>a priori</i> in a written protocol. NACI evidence-based process was used to assess the available evidence and develop a recommendation regarding the use of Supemtek.</p><p><strong>Results: </strong>Ten eligible studies were included in the evidence synthesis. One randomized controlled trial (RCT) in adults aged 50 years and older provided evidence that RIV4 may potentially offer improved protection against laboratory-confirmed influenza A infection compared to standard egg-based influenza vaccines. Data from eight RCTs assessing immunogenicity and five RCTs and one post-marketing surveillance study assessing safety indicated that Supemtek is a safe, well tolerated, and immunogenic alternative to conventional egg-based influenza vaccines for adults.</p><p><strong>Conclusion: </strong>There is fair evidence that Supemtek is effective, safe, and has non-inferior immunogenicity to comparable vaccines, based on direct evidence in adults 18 years of age and older; thus, NACI recommends that Supemtek may be considered among the seasonal influenza vaccines offered to adults 18 years of age and older for their annual influenza vaccination.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 9","pages":"383-391"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summary of the National Advisory Committee on Immunization (NACI) Seasonal Influenza Vaccine Statement for 2022-2023. 国家免疫咨询委员会(NACI)2022-2023 年季节性流感疫苗声明摘要。
Angela Sinilaite, Jesse Papenburg
{"title":"Summary of the National Advisory Committee on Immunization (NACI) Seasonal Influenza Vaccine Statement for 2022-2023.","authors":"Angela Sinilaite, Jesse Papenburg","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>The National Advisory Committee on Immunization (NACI) reviews the evolving evidence on influenza immunization and provides annual recommendations regarding the use of authorized seasonal influenza vaccines to the Public Health Agency of Canada.</p><p><strong>Objective: </strong>To summarize the NACI seasonal influenza vaccine recommendations for 2022-2023 and to highlight new recommendations and supporting evidence.</p><p><strong>Methods: </strong>In the preparation of the Statement on Seasonal Influenza Vaccine for 2022-2023, NACI's Influenza Working Group followed the NACI evidence-based process for developing recommendations. The recommendations were then considered and approved by NACI in light of the available evidence.</p><p><strong>Results: </strong>The following key updates and new recommendations have been made for the 2022-2023 season: 1) updated information/guidance on influenza vaccination in the context of the coronavirus disease 2019 (COVID-19) has been incorporated; 2) Supemtek™ recombinant influenza vaccine may be considered for use among the quadrivalent influenza vaccines offered to adults 18 years of age and older for annual influenza immunization; and 3) Flucelvax<sup>®</sup> Quad may be considered among the quadrivalent influenza vaccines offered to adults and children two years of age and older.</p><p><strong>Conclusion: </strong>NACI continues to recommend that an age-appropriate influenza vaccine should be offered annually for all individuals aged six months of age and older who do not have contraindications to the vaccine, with particular focus on people at high risk of influenza-related complications or hospitalization, people capable of transmitting influenza to those at high risk, and other groups for whom influenza vaccination is particularly recommended.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 9","pages":"373-382"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of influenza case definitions for use in real-world evidence research. 评估用于真实世界证据研究的流感病例定义。
Pamela Doyon-Plourde, Élise Fortin, Caroline Quach
{"title":"Evaluation of influenza case definitions for use in real-world evidence research.","authors":"Pamela Doyon-Plourde, Élise Fortin, Caroline Quach","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Laboratory confirmation of influenza is not routinely done in practice. With the advent of big data, it is tempting to use healthcare administrative databases for influenza vaccine effectiveness studies, which often rely on clinical diagnosis codes. The objective of this article is to compare influenza incidence curves using international case definitions derived from clinical diagnostic codes with influenza surveillance data from the United States (US) Centers for Disease Control and Prevention (CDC).</p><p><strong>Methods: </strong>This case series describes influenza incidence by CDC week, defined using International Classification of Disease diagnostic codes over four influenza seasons (2015-2016 to 2018-2019) in a cohort of US individuals three years of age and older who consulted at least once per year between 2015 and 2019. Results were compared to the number of influenza-positive specimens or outpatient visits for influenza-like illness obtained from the CDC flu surveillance data.</p><p><strong>Results: </strong>The incidence curves of influenza-related medical encounters were very similar to the CDC's surveillance data for laboratory-confirmed influenza. Conversely, the number of influenza-like illness encounters was high when influenza viruses started to circulate, leading to a discrepancy with CDC-reported data.</p><p><strong>Conclusion: </strong>A specific case definition should be prioritized when data for laboratory-confirmed influenza are not available, as a broader case definition would conservatively bias influenza vaccine effectiveness toward the null.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 9","pages":"392-395"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invasive pneumococcal disease surveillance in Canada, 2020. 2020 年加拿大侵袭性肺炎球菌疾病监测。
Alyssa Golden, Averil Griffith, Walter Demczuk, Brigitte Lefebvre, Allison McGeer, Gregory Tyrrell, George Zhanel, Julianne Kus, Linda Hoang, Jessica Minion, Paul Van Caeseele, Hanan Smadi, David Haldane, George Zahariadis, Kristen Mead, Laura Steven, Lori Strudwick, Anita Li, Michael Mulvey, Irene Martin
{"title":"Invasive pneumococcal disease surveillance in Canada, 2020.","authors":"Alyssa Golden, Averil Griffith, Walter Demczuk, Brigitte Lefebvre, Allison McGeer, Gregory Tyrrell, George Zhanel, Julianne Kus, Linda Hoang, Jessica Minion, Paul Van Caeseele, Hanan Smadi, David Haldane, George Zahariadis, Kristen Mead, Laura Steven, Lori Strudwick, Anita Li, Michael Mulvey, Irene Martin","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Invasive pneumococcal disease (IPD), which is caused by <i>Streptococcus pneumoniae</i>, has been a nationally notifiable disease in Canada since 2000. The use of conjugate vaccines has markedly decreased the incidence of IPD in Canada; however, the distribution of serotypes has shifted in favour of non-vaccine types. This report summarizes the demographics, serotypes and antimicrobial resistance of IPD infections in Canada in 2020.</p><p><strong>Methods: </strong>The Public Health Agency of Canada's National Microbiology Laboratory (Winnipeg, Manitoba) collaborates with provincial and territorial public health laboratories to conduct national surveillance of IPD. A total of 2,108 IPD isolates were reported in 2020. Serotyping was performed by Quellung reaction and antimicrobial susceptibilities were determined in collaboration with the University of Manitoba/Canadian Antimicrobial Resistance Alliance. Population-based IPD incidence rates were obtained through the Canadian Notifiable Disease Surveillance System.</p><p><strong>Results: </strong>Overall incidence of IPD in Canada decreased significantly from 11.5 (95% confidence interval [CI]: 10.1-13.1) to 6.0 (95% CI: 5.0-7.2), and from 10.0 (95% CI: 9.7-10.3) to 5.9 (95% CI: 5.7-6.2) cases per 100,000 from 2019 to 2020; in those younger than five years and those five years and older, respectively. The most common serotypes overall were 4 (11.2%, n=237), 3 (10.9%, n=229) and 8 (7.2%, n=151). From 2016 to 2020, serotypes with increasing trends (<i>p</i><0.05) included 4 (6.4%-11.2%), 3 (9.5%-10.9%), 8 (5.2%-7.2%) and 12F (3.6%-5.7%). The overall prevalence of PCV13 serotypes increased over the same period (30.3%-34.9%, <i>p</i><0.05). Antimicrobial resistance rates in 2020 included 23.0% clarithromycin and 9.9% penicillin (IV meningitis breakpoints). Multidrug-resistant IPD has significantly increased since 2016 (4.2%-9.5%, <i>p</i><0.05).</p><p><strong>Conclusion: </strong>Though the incidence of IPD decreased in 2020 in comparison to previous years across all age groups, disease due to PCV13 serotypes 3 and 4, as well as non-PCV13 serotypes such as 8 and 12F, increased in prevalence. Continued surveillance of IPD is imperative to monitor shifts in serotype distribution and antimicrobial resistance.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"48 9","pages":"396-406"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An overview of the National West Nile Virus Surveillance System in Canada: A One Health approach. 加拿大全国西尼罗病毒监测系统概述:同一个健康方法。
D. Todoric, L. Vrbova, Maria Elizabeth Mitri, S. Gasmi, Angelica Stewart, Sandra Connors, Hui Zheng, A. Bourgeois, M. Drebot, J. Paré, Marnie Zimmer, P. Buck
{"title":"An overview of the National West Nile Virus Surveillance System in Canada: A One Health approach.","authors":"D. Todoric, L. Vrbova, Maria Elizabeth Mitri, S. Gasmi, Angelica Stewart, Sandra Connors, Hui Zheng, A. Bourgeois, M. Drebot, J. Paré, Marnie Zimmer, P. Buck","doi":"10.14745/ccdr.v48i05a01","DOIUrl":"https://doi.org/10.14745/ccdr.v48i05a01","url":null,"abstract":"National West Nile virus (WNV) surveillance was established in partnership with the federal, provincial and territorial governments starting in 2000, with the aim to monitor the emergence and subsequent spread of WNV disease in Canada. As the disease emerged, national WNV surveillance continued to focus on early detection of WNV disease outbreaks in different parts of the country. In Canada, the WNV transmission season occurs from May to November. During the season, the system adopts a One Health approach to collect, integrate, analyze and disseminate national surveillance data on human, mosquito, bird and other animal cases. Weekly and annual reports are available to the public, provincial/territorial health authorities, and other federal partners to provide an ongoing national overview of WNV infections in Canada. While national surveillance allows a jurisdiction-by-jurisdiction comparison of data, it also helps to guide appropriate disease prevention strategies such as education and awareness campaigns at the national level. This paper aims to describe both the establishment and the current structure of national WNV surveillance in Canada.","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"2673 1","pages":"181-187"},"PeriodicalIF":0.0,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81009284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信