{"title":"The Role of Mesenchymal Stem Cells in Hair Regeneration and Hair Cycle.","authors":"Cong Ma, Ming Cheng, Yan Wu, Xuegang Xu","doi":"10.1089/scd.2023.0156","DOIUrl":"10.1089/scd.2023.0156","url":null,"abstract":"<p><p>The health of hair is directly related to people's health and appearance. Hair has key physiological functions, including skin protection and temperature regulation. Hair follicle (HF) is a vital mini-organ that directly impacts hair growth. Besides, various signaling pathways and molecules regulate the growth cycle transition of HFs. Hair and its regeneration studies have attracted much interest in recent years with the increasing rate of alopecia. Mesenchymal stem cells (MSCs), as pluripotent stem cells, can differentiate into fat, bone, and cartilage and stimulate regeneration and immunological regulation. MSCs have been widely employed to treat various clinical diseases, such as bone and cartilage injury, nerve injury, and lung injury. Besides, MSCs can be used for treatment of hair diseases due to their regenerative and immunomodulatory abilities. This review aimed to assess MSCs' treatment for alopecia, pertinent signaling pathways, and new material for hair regeneration in the last 5 years.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/scd.2023.29016.ack","DOIUrl":"https://doi.org/10.1089/scd.2023.29016.ack","url":null,"abstract":"","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":"33 1-2","pages":"54-55"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hector Tejeda-Mora, Yvette den Hartog, Ivo J Schurink, Monique M A Verstegen, Jeroen de Jonge, Martijn W F van den Hoogen, Carla C Baan, Robert C Minnee, Martin J Hoogduijn, Luc J W van der Laan, Jorke Willemse
{"title":"Endothelial Cell Replacement of Human Veins, Modeling Vascular Repair and Endothelial Cell Chimerism.","authors":"Hector Tejeda-Mora, Yvette den Hartog, Ivo J Schurink, Monique M A Verstegen, Jeroen de Jonge, Martijn W F van den Hoogen, Carla C Baan, Robert C Minnee, Martin J Hoogduijn, Luc J W van der Laan, Jorke Willemse","doi":"10.1089/scd.2023.0142","DOIUrl":"10.1089/scd.2023.0142","url":null,"abstract":"<p><p>Allogeneic transplant organs are potentially highly immunogenic. The endothelial cells (ECs) located within the vascular system serve as the primary interface between the recipient's immune system and the donor organ, playing a key role in the alloimmune response. In this study, we investigated the potential use of recipient-derived ECs in a vein recellularization model. In this study, human iliac veins underwent complete decellularization using a Triton X-100 protocol. We demonstrated the feasibility of re-endothelializing acellular blood vessels using either human umbilical cord vein endothelial cell or human venous-derived ECs, with this re- endothelialization being sustainable for up to 28 days in vitro. The re-endothelialized veins exhibited the restoration of vascular barrier function, along with the restoration of innate immunoregulatory capabilities, evident through the facilitation of monocytic cell transmigration and their polarization toward a macrophage phenotype following transendothelial extravasation. Finally, we explored whether recellularization with EC of a different donor could prevent antibody-mediated rejection. We demonstrated that in chimeric vessels, allogeneic EC became a target of the humoral anti-donor response after activation of the classical immune complement pathway whereas autologous EC were spared, emphasizing their potential utility before transplantation. In conclusion, our study demonstrates that replacement of EC in transplants could reduce the immunological challenges associated with allogeneic grafts.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"27-42"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89721485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/scd.2023.29016.ack","DOIUrl":"https://doi.org/10.1089/scd.2023.29016.ack","url":null,"abstract":"","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138811899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Do We Establish a Cold Chain Preservation Process Leading to Warmed Healthy Cells?","authors":"Steve Oh","doi":"10.1089/scd.2023.0225","DOIUrl":"10.1089/scd.2023.0225","url":null,"abstract":"NA.","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"717-718"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands.","authors":"Jingming Liu, Yanan Li, Yuxin Zhang, Qianyu Cheng, Huikai Liu, Liwen He, Liang Chen, Tianyu Zhao, Panpan Liang, Wenping Luo","doi":"10.1089/scd.2023.0125","DOIUrl":"10.1089/scd.2023.0125","url":null,"abstract":"<p><p>The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that <i>Agt</i> is a specific marker of SMG serous acinar cells, whereas <i>Gal</i> is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that <i>Agt</i> and <i>Gal</i> represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"758-767"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yelim Ahn, Jinsol Jeong, Kwang-Hwan Choi, Dong-Kyung Lee, Mingyun Lee, Na-Young Lee, Dae-Yong Kim, Chang-Kyu Lee
{"title":"Development of Reproducible and Scalable Culture Conditions for In Vitro Maintenance of Pig Embryonic Stem Cells Using the Sandoz Inbred Swiss Mouse Thioguanine-Resistant Ouabain-Resistant Cell Line as a Feeder Layer.","authors":"Yelim Ahn, Jinsol Jeong, Kwang-Hwan Choi, Dong-Kyung Lee, Mingyun Lee, Na-Young Lee, Dae-Yong Kim, Chang-Kyu Lee","doi":"10.1089/scd.2023.0171","DOIUrl":"10.1089/scd.2023.0171","url":null,"abstract":"<p><p>Feeder cells play a crucial role in maintaining the pluripotency of embryonic stem cells (ESCs) by secreting various extrinsic regulators, such as extracellular matrix (ECM) proteins and growth factors. Although primary mouse embryonic fibroblasts (MEFs) are the most widely used feeder cell type for the culture of ESCs, they have inevitable disadvantages such as batch-to-batch variation and labor-intensive isolation processes. Here, we revealed that the Sandoz inbred Swiss Mouse (SIM) thioguanine-resistant ouabain-resistant (STO) cell line, an immortalized cell line established from mouse SIM embryonic fibroblasts, can be used as a feeder layer for in vitro culture of authentic pig ESCs instead of primary MEFs. First, the expression of genes encoding ECM proteins and growth factors was analyzed to compare their secretory functions as feeder cells. Quantitative real-time polymerase chain reaction (qPCR) showed that the gene expression of these pluripotency-associated factors was downregulated in STO cells compared to primary MEFs of similar density. Therefore, subsequent optimization of the culture conditions was attempted using higher STO cell densities. Notably, pig ESCs cultured on STO cell density of 3 × (187,500 cells/cm<sup>2</sup>) exhibited the most similar pluripotent state to pig ESCs cultured on primary MEF density of 1 × (62,500 cells/cm<sup>2</sup>), as determined by alkaline phosphatase staining, qPCR, and immunocytochemistry. In addition, pig ESCs cultured on STO cell density of 3 × formed complex teratoma containing multiple types of tissues derived from all three germ layers. Our culture conditions using optimal STO cell density can be applied to fields requiring reproducible and scalable production of pig ESCs, such as preclinical research and cellular agriculture.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"747-757"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41144011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhe Zhang, Hanyue Zhang, Baoqi Hu, Yan Luan, Kun Zhu, Bo Ma, Zhichao Zhang, Xiaoyan Zheng
{"title":"R-Loop Defines Neural Stem/Progenitor Cells During Mouse Neurodevelopment.","authors":"Zhe Zhang, Hanyue Zhang, Baoqi Hu, Yan Luan, Kun Zhu, Bo Ma, Zhichao Zhang, Xiaoyan Zheng","doi":"10.1089/scd.2023.0196","DOIUrl":"10.1089/scd.2023.0196","url":null,"abstract":"<p><p>Neural stem/progenitor cells (NSPCs) are present in the mammalian brain throughout life and are involved in neurodevelopment and central nervous system repair. Although typical epigenetic signatures, including DNA methylation, histone modifications, and microRNAs, play a pivotal role in regulation of NSPCs, several of the epigenetic regulatory mechanisms of NSPCs remain unclear. Thus, defining a novel epigenetic feature of NSPCs is crucial for developing stem cell therapy to address neurologic disorders caused by injury. In this study, we aimed to define the R-loop, a three-stranded nucleic acid structure, as an epigenetic characteristic of NSPCs during neurodevelopment. Our results demonstrated that R-loop levels change dynamically throughout neurodevelopment. Cells with high levels of R-loops consistently decreased and were enriched in the area of neurogenesis. Additionally, these cells costained with SOX2 during neurodevelopment. Furthermore, these cells with high R-loop levels expressed Ki-67 and exhibited a high degree of overlap with the transcriptional activation markers, H3K4me3, ser5, and H3K27ac. These findings suggest that R-loops may serve as an epigenetic feature for transcriptional activation in NSPCs, indicating their role in gene expression regulation and neurogenesis.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"719-730"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoqiong Wang, Minjae Kim, Kyoung Hwa Jung, Young Gyu Chai, Bert Binas
{"title":"Defined Conditions Control the Morphological Dualism of Rat Primitive Extraembryonic Endoderm Stem Cells.","authors":"Xiaoqiong Wang, Minjae Kim, Kyoung Hwa Jung, Young Gyu Chai, Bert Binas","doi":"10.1089/scd.2023.0187","DOIUrl":"10.1089/scd.2023.0187","url":null,"abstract":"<p><p>Rat primitive extraembryonic endoderm (pXEN) stem cell lines indefinitely preserve the characteristic features of the early extraembryonic endoderm (ExEn) in vitro, but require unknown serum factors and exhibit a hybrid (mesenchymal-epithelial) phenotype. We report two chemically defined conditions that differ by the addition of the cytokine leukemia inhibitory factor (Lif) and the β-catenin-stabilizing drug Chir99021, and enable permanent self-renewal as mesenchymal and epithelial morphotypes, respectively. The morphotypes are interconvertible and equipotent, as shown by the formation of well-differentiated organoids. Surprisingly, the proliferation of both morphotypes requires Lif-type Gp130/Stat3 signaling (autocrine in the absence of added Lif) and noncanonical Wnt signaling (autocrine). In addition, the epithelial version requires β-catenin for proliferation and morphology. Interestingly, the mesenchymal cells also express key epithelial markers, but those are improperly structured and/or not functional, indicating a primed state. These results provide an improved platform for studying the proliferation and plasticity of the early ExEn, which occurs in mesenchymal and epithelial forms in vivo.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"731-746"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Induced Pluripotent Stem-Derived Parathyroid Cells: An Opportunity for Human Parathyroid Disorders","authors":"Sabrina Corbetta","doi":"10.1089/scd.2023.29015.editorial","DOIUrl":"https://doi.org/10.1089/scd.2023.29015.editorial","url":null,"abstract":"Stem Cells and DevelopmentVol. 32, No. 21-22 Guest EditorialFree AccessInduced Pluripotent Stem-Derived Parathyroid Cells: An Opportunity for Human Parathyroid DisordersSabrina CorbettaSabrina CorbettaAddress correspondence to: Sabrina Corbetta, MD, PhD, Bone Metabolism Disorders and Diabetes Unit, IRCCS Istituto Auxologico Italiano, Via L. Ariosto, Milan 20145, Italy E-mail Address: [email protected]https://orcid.org/0000-0001-8140-3175Bone Metabolism Disorders and Diabetes Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy.Department of Biomedical, Surgical and Dentistry Sciences, University of Milan, Milan, Italy.Search for more papers by this authorPublished Online:3 Nov 2023https://doi.org/10.1089/scd.2023.29015.editorialAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Parathyroid glands are involved in calcium-phosphate homeostasis. Hydroxyapatite crystals formed by calcium and phosphate are the main inorganic constituents of skeletal bone matrix. Calcium is needed for neuromuscular excitability, muscle contraction, and coagulation, while phosphate is fundamental for the energetic molecule adenosine triphosphate.Parathyroid cells sense extracellular calcium concentrations and release parathormone (PTH), which exerts a hypercalcemic effect by acting on bone and kidney. PTH-induced bone matrix resorption increases circulating calcium and phosphate levels. PTH induces calcium reabsorption from ultrafiltrate urine and phosphate renal waist; its secretion was induced by hyperphosphatemia, to avoid calcium-phosphate precipitation in soft tissues [1]. The specific calcium-sensing activity of the parathyroid cells is mediated by the molecular structure of the calcium-sensing receptor (CASR), a G-protein coupled seven transmembrane domains receptor [2].Parathyroid cells origin from the endoderm cells during the embryonic development interacting with mesenchymal cells as demonstrated by studies in mice knockout for TBX1 gene [3]. The expression of the parathyroid master regulatory gene GCM2 in cells of the third and fourth pharyngeal pouches during embryogenesis drives differentiation toward parathyroid cells [3]. GCM2 may play a role for parathyroid cell proliferation and maintenance also in adulthood [4], sustaining the expression of CASR and PTH genes.Parathyroid diseases are characterized by circulating calcium and phosphate deregulation due to alterations of the calcium sensitivity and/or of PTH release. Clinical parathyroid diseases are characterized by conditions of hypoparathyroidism associated with hypocalcemia and hyperparathyroidism associated with hypercalcemia.Hypoparathyroidism is due to loss of parathyroid functional cells, most frequently consistent in life-long condition of postsurgical hypoparathyroidism (secondary to thyroid, parathyroid, larynx, cervical lymphonodal dissection) and post-conventional irr","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":"45 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135564425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}