{"title":"Dark Clouds Looming Over Regenerative Medicine in Japan.","authors":"Hiroshi Kawaguchi","doi":"10.1089/scd.2025.0012","DOIUrl":"https://doi.org/10.1089/scd.2025.0012","url":null,"abstract":"<p><p>Japan's regenerative medicine sector has encountered major challenges, underscored by the recent failures of products such as HeartSheet and Collategene. These setbacks expose critical weaknesses in the fast-track approval system, raising concerns about patient safety and the scientific robustness of product evaluations. Despite strong governmental support, addressing these fundamental issues is essential for the future success of regenerative medicine in Japan.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Neurotrophins in the Generation of Spiral Ganglion Neuron-Like Cells from Embryonic Stem Cells.","authors":"Anika Tabassum, Meng Deng, Zhengqing Hu","doi":"10.1089/scd.2024.0164","DOIUrl":"https://doi.org/10.1089/scd.2024.0164","url":null,"abstract":"<p><p>Spiral ganglion neurons (SGNs) are crucial for transferring auditory signals from cochlear sensory hair cells to the brainstem. However, SGNs are usually damaged in sensorineural hearing loss. Embryonic stem cells (ESCs) have been used to regenerate SGNs, but it is obscure whether ESC-derived neurons can fully resemble SGN subtype features. This study aimed to understand the effect of neurotrophins on the generation of SGN-like cells from ESCs and their subsequent subtype specification. This study utilized a stepwise neuronal generation approach to direct DsRed ESCs toward neural progenitors and eventually SGN-like cells. The derived SGN-like cells expressed multiple neuronal markers, including Tuj1, Map2, and NeuN, indicating maturity. Neurotrophins, including brain-derived neurotrophic factor, neutrotrophin-3, and nerve growth factor, seemed to regulate the generation of mature neurons from ESCs. In addition, derived neuron-like cells expressed the otic protein marker Gata3 and glutamatergic marker VGluT1, suggesting that they are SGN-like the glutamatergic cells. Significantly more SGN subtype marker-positive cells, including Pou4f1, calbindin, and calretinin-positive cells, were observed in the neurotrophin treatment groups. Overall, this study indicates the potential of SGN subtype generation from ESCs, which could be significant for cochlear implant therapy or stem cell-based replacement studies.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengyi Wang, Yutong Liu, Shenglei Zhang, Peng Wang
{"title":"Muse Cells Orchestrating Renal Repair via Macrophage M2 Polarization in Ischemia-Reperfusion Injury.","authors":"Shengyi Wang, Yutong Liu, Shenglei Zhang, Peng Wang","doi":"10.1089/scd.2024.0209","DOIUrl":"https://doi.org/10.1089/scd.2024.0209","url":null,"abstract":"<p><p>Acute renal ischemia-reperfusion injury (IRI) poses significant challenges in clinical management, necessitating the exploration of novel therapeutic strategies. This study investigates the therapeutic potential and underlying mechanisms of multilineage-differentiating stress-enduring (Muse) cells in alleviating renal IRI. In recent years, stem cell research has advanced significantly, providing promising prospects for clinical treatment. Mesenchymal stromal cells (MSCs), from which Muse cells are derived, are a heterogeneous population of cells that include stem cells with varying degrees of multipotency, committed progenitors, and differentiated cells. Muse cells, a subpopulation of MSCs, were isolated from adipose tissue obtained through liposuction in this study. In vivo studies revealed the effective recruitment of Muse cells to injured kidneys and their ability to ameliorate renal pathological damage and improve renal function in a rat model of acute kidney IRI. Mechanistically, Muse cells modulated the polarization of macrophages toward an anti-inflammatory M2 phenotype, as evidenced by decreased M1/M2 ratios. In vitro experiments further elucidated the interaction between Muse cells and macrophages, demonstrating Muse cell-mediated promotion of M2 polarization. Co-culture with M2 macrophages during reoxygenation phases enhanced the survival of renal tubular epithelial cells following hypoxia-reoxygenation injury, highlighting the therapeutic potential of Muse cells in mitigating renal IRI through modulation of macrophage polarization. These findings provide insights into the therapeutic mechanisms of Muse cells and offer promising avenues for the development of innovative renal injury treatments.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developing a Serum-Free and Cytokine-Optimizing Induction Medium to Increase the Production of CD14<sup>+</sup>CD16<sup>+</sup> and CD14<sup>+</sup>CD16<sup>-</sup> Monocytes from Human CD133<sup>+</sup> Hematopoietic Stem and Progenitor Cells.","authors":"Tsung-Yu Tseng, Yi-Ting Lai, Yun Chen, Hsing-Fen Tsai, Keng-Fu Hsu, Shu-Ching Hsu, Chao-Ling Yao","doi":"10.1089/scd.2024.0143","DOIUrl":"10.1089/scd.2024.0143","url":null,"abstract":"<p><p>Immunotherapy utilizes immune cells to target cancer and improves treatment outcomes with few side effects. Despite the effectiveness of immunotherapy, the limited availability of monocytes, which are essential for the differentiation of antigen-presenting cells, remains a major challenge. In this study, we developed a technique for inducing monocytes from hematopoietic stem and progenitor cells by using a serum-free (SF) medium supplemented with optimal concentrations of serum substitutes and cytokines. Three key serum substitutes, namely lipids, ascorbic acid, and β-glycerophosphate, were identified through factorial design screening, with their concentrations optimized through steepest ascent path analysis. Iscove's modified Dulbecco's medium was identified as the optimal basal medium. Long-term culturing confirmed the successful induction of CD14<sup>+</sup>CD16<sup>+</sup> and CD14<sup>+</sup>CD16<sup>-</sup> monocytes. Functional assays validated the efficacy of this technique with comparable gene expression, cytokine secretion, phagocytosis ability, and T-cell stimulating ability between SF and serum-containing cultures. Under SF conditions, high expression levels of CD16 were detected, indicating the broad range of potential applications of CD16<sup>+</sup> monocytes. Overall, this technique represents a feasible SF alternative for monocyte generation, with potential benefits for immunotherapy.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"73-84"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alpha-Synuclein Inhibition Promotes Erythropoiesis by Affecting Methylation Modifications of Fructose and Mannose Metabolism.","authors":"Xinrong He, Zixiang Geng, Gang Zou, Zeyu Cui, Yu Wang, Jiamin Song, Jing Zhang, Yiye Shao, Jingtao Feng, Yuncheng Wu, Te Liu, Xiaoying Zhu","doi":"10.1089/scd.2024.0160","DOIUrl":"10.1089/scd.2024.0160","url":null,"abstract":"<p><p>Ninety-nine percent of alpha-synuclein (α-syn) in the human body is distributed in erythrocytes. However, the role that α-syn plays in erythropoiesis remains unclear. To determine the effect of α-syn on erythroid differentiation, the erythroid cells, derived from human CD34+ progenitors in the umbilical cord, were cultured in a system composed of a series of cytokines and harvested after 6 days. Our work showed α-syn inhibition-promoted erythropoiesis as characterized by altered activity of surface markers of erythroid development such as CD49d, CD36, and CD71; and different methylation status of GDP-D-mannose dehydratase, aldolase fructose-bisphosphate A, and sorbitol dehydrogenase, key enzymes involved in fructose and mannose metabolism. Reduced adenosine triphosphate and elevated lactic acid also suggested a shift in cellular metabolism from mitochondrial respiration to glycolysis. Our study revealed a previously unknown role for α-syn as a methylation regulator that alters the activity of key enzymes of the fructose and mannose metabolism, thus contributing to erythropoiesis.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"85-98"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Hochheuser, Maria L Rozeman, Nina Kunze, Nina U Gelineau, Carlijn Kuijk, Antoinette Jaspers-Bakker, Cor van den Bos, Miranda P Dierselhuis, Tirza J E Slager, Marta Fiocco, József Zsiros, Wim J E Tissing, Kasper Westinga, Christian M Zwaan, Carlijn Voermans, Godelieve A M Tytgat, Kathelijne C J M Kraal, Ilse Timmerman
{"title":"PEGylated Granulocyte Colony-Stimulating Factor and Plerixafor Enhance Autologous Stem and Progenitor Cell Mobilization and Transplantation in Pediatric Patients.","authors":"Caroline Hochheuser, Maria L Rozeman, Nina Kunze, Nina U Gelineau, Carlijn Kuijk, Antoinette Jaspers-Bakker, Cor van den Bos, Miranda P Dierselhuis, Tirza J E Slager, Marta Fiocco, József Zsiros, Wim J E Tissing, Kasper Westinga, Christian M Zwaan, Carlijn Voermans, Godelieve A M Tytgat, Kathelijne C J M Kraal, Ilse Timmerman","doi":"10.1089/scd.2024.0178","DOIUrl":"10.1089/scd.2024.0178","url":null,"abstract":"<p><p>Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF). While efficacy of these is established in adults, limited data for their use in pediatric patients are available. Here, we compare Good versus Poor Mobilizers and study success of different mobilization regimens in regard to CD34<sup>+</sup>cell-collection, -quality, -phenotype and hematologic reconstitution in pediatric patients. In this multi-center retrospective study, we analyzed data of 278 patients with solid tumors and lymphoma, mobilized with either G-CSF (<i>n</i> = 224), PEG-G-CSF (<i>n</i> = 34), or G-CSF/PEG-G-CSF with additional plerixafor (<i>n</i> = 20). In Poor Mobilizers (13.7% of all patients), addition of plerixafor to G-CSF augmented CD34<sup>+</sup>cell collection, without adverse effects on hematologic reconstitution and CD34<sup>+</sup>cell quality. PEG-G-CSF-aided mobilization was successful as first-line treatment in two-thirds of patients and did not impair hematological reconstitution, compared to G-CSF-only. Within the Poor Mobilizer group, G-CSF+plerixafor increased primitive (CD45RA<sup>-</sup>CD38<sup>-</sup>CD90<sup>+</sup>CD49f<sup>+</sup>) and CXCR4-expressing CD34<sup>+</sup>cells in apheresis products compared to G-CSF-only, without exceeding levels of Good Mobilizers. No plerixafor-related increase in tumor cells was observed in apheresis products. In conclusion, our comprehensive study supports the use of plerixafor and furthermore demonstrates the potential of patient-friendly PEG-G-CSF for mobilization of pediatric patients.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"61-72"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael J Edel, Helena Sarret Casellas, Jordi Requena Osete, Núria Nieto-Nicolau, Francisco Arnalich-Montiel, María P De Miguel, Samuel McLenachan, Danial Roshandel, Ricardo P Casaroli-Marano, Belén Alvarez-Palomo
{"title":"An Optimized Method to Produce Human-Induced Pluripotent Stem Cell-Derived Limbal Stem Cells Easily Adaptable for Clinical Use.","authors":"Michael J Edel, Helena Sarret Casellas, Jordi Requena Osete, Núria Nieto-Nicolau, Francisco Arnalich-Montiel, María P De Miguel, Samuel McLenachan, Danial Roshandel, Ricardo P Casaroli-Marano, Belén Alvarez-Palomo","doi":"10.1089/scd.2024.0172","DOIUrl":"10.1089/scd.2024.0172","url":null,"abstract":"<p><p>In adults, the limbal stem cells (LSC) reside in the limbal region of the eye, at the junction of the cornea and the sclera where they renew the outer epithelial layer of the cornea assuring transparency. LSC deficiencies (LSCD) due to disease or injury account for one of the major causes of blindness. Among current treatments for LSCD, cornea transparency can be restored by providing new LSC to the damaged eye and induced pluripotent stem cells (iPSC) holds great promise as a new advanced cell source. A synthetic mRNA-based protocol to produce human iPSC from bone marrow mesenchymal stem cells has been defined. The results demonstrate a standardizable method that can be easily adaptable for clinical-grade production standards, produce high-purity LSC-like cells in a relatively rapid timeframe of 12 days, and can be successfully seeded on amniotic membrane or a biodegradable fibrin gel for transplantation. In vivo data demonstrated it is feasible to transplant the iPSC-LSC fibrin patch. In conclusion, an efficient method has been developed to produce patient-specific LSC and seed them on a scaffold fibrin gel for future treatment of LSC-deficiency disease.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"49-60"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asma Ismail Mahmod, Kayatri Govindaraju, Yogeswaran Lokanathan, Nur Akmarina B M Said, Baharudin Ibrahim
{"title":"Exploring the Potential of Stem Cells in Modulating Gut Microbiota and Managing Hypertension.","authors":"Asma Ismail Mahmod, Kayatri Govindaraju, Yogeswaran Lokanathan, Nur Akmarina B M Said, Baharudin Ibrahim","doi":"10.1089/scd.2024.0195","DOIUrl":"https://doi.org/10.1089/scd.2024.0195","url":null,"abstract":"<p><p>Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood. Recent studies indicate that an imbalance in gut microbiota, referred to as dysbiosis, may promote hypertension, affecting blood pressure regulation through metabolites such as short-chain fatty acids and trimethylamine N-oxide. Current antihypertensive medications face limitations, including resistance and adherence issues, highlighting the need for novel therapeutic approaches. Stem cell therapy, an emerging field in regenerative medicine, shows promise in addressing these challenges. Stem cells, with mesenchymal stem cells being a prime example, have regenerative, anti-inflammatory, and immunomodulatory properties. Emerging research indicates that stem cells can modulate gut microbiota, reduce inflammation, and improve vascular health, potentially aiding in blood pressure management. Research has shown the positive impact of stem cells on gut microbiota in various disorders, suggesting their potential therapeutic role in treating hypertension. This review synthesizes the recent studies on the complex interactions between gut microbiota, stem cells, and systemic arterial hypertension. By offering a thorough analysis of the current literature, it highlights key insights, uncovers critical gaps, and identifies emerging trends that will inform and guide future investigations in this rapidly advancing field.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epithelial-Mesenchymal Transition Functions as a Driver for the Direct Conversion of Somatic Cells.","authors":"Tsutomu Motohashi, Hitomi Aoki, Takahiro Kunisada, Masatake Osawa","doi":"10.1089/scd.2024.0181","DOIUrl":"https://doi.org/10.1089/scd.2024.0181","url":null,"abstract":"<p><p>Direct conversion is an innovative new technology that involves the conversion of somatic cells to target cells without passing through a pluripotent state. Forced expression alone or in combination with transcription factors (TFs), which are critical for the generation of target cells, is important for successful direct conversion. However, most somatic cells are unable to directly convert into target cells even with forced expression. We herein demonstrated that epithelial-mesenchymal transition (EMT) is advantageous for the direct conversion of somatic cells. We previously reported that mouse keratinocytes converted into neural crest cells (NCCs) following the forced expression of the NCC specifier Sox10 in combination with expression of the TFs Snail1, Slug, Twist1, and Tcfap2a (4 TFs). 4 TFs induced EMT in keratinocytes; therefore, EMT was considered to be advantageous for direct conversion. The direct conversion of mouse mammary gland epithelial cells (NMuMG cells) into NCCs was not observed with the forced expression of Sox10, but was detected with the expression of Sox10 following the induction of EMT by 4 TFs. Furthermore, TGF-β1-induced EMT and Sox10 expression directly converted NMuMG cells into NCCs. These results suggest that the induction of EMT in somatic cells is advantageous for direct conversion.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loubna Abdel Hadi, Samira Sheikh, Gisela M Suarez-Formigo, Aya Zakaria, Fatma Abdou, Carlos Agustin Villegas Valverde, Yendry Ventura Carmenate, Antonio Alfonso Bencomo-Hernandez, Rene Antonio Rivero-Jimenez
{"title":"Intermittent Fasting During Ramadan Increases the Absolute Number of Circulating Progenitor Stem Cells in Healthy Subjects.","authors":"Loubna Abdel Hadi, Samira Sheikh, Gisela M Suarez-Formigo, Aya Zakaria, Fatma Abdou, Carlos Agustin Villegas Valverde, Yendry Ventura Carmenate, Antonio Alfonso Bencomo-Hernandez, Rene Antonio Rivero-Jimenez","doi":"10.1089/scd.2024.0194","DOIUrl":"10.1089/scd.2024.0194","url":null,"abstract":"<p><p>Fasting regimens have shown profound impact on pro-longevity and tissue regeneration in diverse species. Physiological events can induce a regenerative response in adult stem cells. However, little is known about signaling and activation of adult stem cells which are modulated by fasting. This study analyzed the presence of hematopoietic stem/progenitor cells (HSPCs) and their circulation in the peripheral blood (PB) of healthy male adults practicing Ramadan fasting. Ten healthy male volunteers were enrolled in this prospective observational study. PB samples were collected twice daily on days 0, 10, 20, and 30 of Ramadan fasting (RF). Populations of stem cells and serum soluble factors were analyzed by flow cytometry. As a response to RF, we report an increase in the average absolute count of circulating of HSPCs, defined as LIN<sup>-</sup>CD45<sup>-</sup> and LIN<sup>-</sup>CD45<sup>+</sup> cell subsets expressing the stem markers, CD34 and CD133. Changes in the number of HSPCs subsets reflected changes in the peripheral concentration of chemoattractant soluble factors during fasting. A chemotaxis assay showed a migratory property of HSPCs towards plasma, collected at D30 of fasting that contained a higher concentration of SCF and G-CSF. The relationship between RF and an increase in the number of circulating HSPCs in part, describes a regenerative response to the physiological changes during fasting and may open opportunities to define the role of dietary intervention in the stem cell therapy.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"35-47"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}