{"title":"Establishment of Periodontal Ligament Stem Cell-like Cells Derived from Feeder-Free Cultured Induced Pluripotent Stem Cells.","authors":"Daiki Yamashita, Sayuri Hamano, Daigaku Hasegawa, Hideki Sugii, Tomohiro Itoyama, Makoto Ikeya, Hidefumi Maeda","doi":"10.1089/scd.2024.0122","DOIUrl":"https://doi.org/10.1089/scd.2024.0122","url":null,"abstract":"<p><p>The periodontal ligament (PDL) is a fibrous connective tissue that connects the cementum of the root to the alveolar bone. PDL stem cells (PDLSCs) contained in the PDL can differentiate into cementoblasts, osteoblasts, and PDL fibroblasts, with essential roles in periodontal tissue regeneration. Therefore, PDLSCs are expected to be useful in periodontal tissue regeneration therapy. In a previous study, we differentiated induced pluripotent stem cells (iPSCs) into PDLSC-like cells (iPDLSCs), which expressed PDL-related markers and mesenchymal stem cell (MSC) markers; they also exhibited high proliferation and multipotency. However, the iPSCs used in this differentiation method were cultured on mouse embryonic fibroblasts; thus, they constituted on-feeder iPSCs (OF-iPSCs). Considering the risk of contamination with feeder cell-derived components, iPDLSCs differentiated from OF-iPSCs (ie, OF-iPDLSCs) are unsuitable for clinical applications. In this study, we aimed to obtain PDLSC-like cells from feeder-free iPSCs (FF-iPSCs) using OF-iPDLSC differentiation method. First, we differentiated FF-iPSCs into neural crest cell-like cells (FF-iNCCs) and confirmed that FF-iNCCs expressed NCC markers (eg, Nestin and p75NTR). Then, we cultured FF-iNCCs on human primary PDL cell-derived extracellular matrix for 2 weeks; the resulting cells were named FF-iPDLSCs. FF-iPDLSCs exhibited higher expression of PDL-related and MSC markers compared with OF-iPDLSCs. FF-iPDLSCs also demonstrated proliferation and multipotency in vitro. Finally, we analyzed the ability of FF-iPDLSCs to form periodontal tissue in vivo upon subcutaneous transplantation with β-tricalcium phosphate scaffolds into dorsal tissues of immunodeficient mice. Eight weeks after transplantation, FF-iPDLSCs had formed osteocalcin-positive bone/cementum-like tissues and collagen 1-positive PDL-like fibers. These results suggested that we successfully obtained PDLSC-like cells from FF-iPSCs. Our findings will contribute to the development of novel periodontal regeneration therapies.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanan Jafar, Dana Alqudah, Reem Rahmeh, Dana Al-Hattab, Khalid Ahmed, Rama Rayyan, Awni Abusneinah, Mohammad Rasheed, Yaser Rayyan, Abdalla Awidi
{"title":"Safety and Potential Efficacy of Expanded Umbilical Cord-Derived Mesenchymal Stromal Cells in Luminal Ulcerative Colitis Patients.","authors":"Hanan Jafar, Dana Alqudah, Reem Rahmeh, Dana Al-Hattab, Khalid Ahmed, Rama Rayyan, Awni Abusneinah, Mohammad Rasheed, Yaser Rayyan, Abdalla Awidi","doi":"10.1089/scd.2024.0102","DOIUrl":"10.1089/scd.2024.0102","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is characterized by periods of flare-ups and remission. It is likely to be an autoimmune in origin, presenting persistent therapeutic challenges despite current therapies. This study aims to investigate the potential of umbilical cord mesenchymal stromal cells (UCMSCs) in treating ulcerative colitis (UC). This study is a prospective phase 1 pilot, open-label, single-arm, and single-center study. UCMSCs were cultured under current Good Manufacturing Practice (cGMP) conditions and intravenously administered to six patients with UC. Safety and efficacy were evaluated using the Mayo Score/Disease Activity Index. Among the six enrolled adult patients, five completed long-term follow-ups. All exhibited at diagnosis active UC confirmed through comprehensive assessment methods. Each patient received three injections intravenously 2 weeks apart with a dose of 100 million UCMSC each. No significant short-term or intermediate-term adverse events were detected post-UCMSC administration. Long-term follow-up at 12 and 24 months showed sustained safety and no adverse events. Notably, three out of five patients achieved a Mayo score of 0 for UC, maintained at both 12 and 24 months, indicating a highly significant response (<i>P</i> < 0.001). This study demonstrates the safety and potential efficacy of UCMSCs in active UC. However, larger trials are warranted to validate these preliminary findings and to establish the role of UCMSC therapy as an option for managing UC.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In Gul Kim, So Young Eom, Hana Cho, Yewon Kim, Saeyeon Hwang, Hyunsoo Kim, Jungirl Seok, Seok Chung, Hye-Joung Kim, Eun-Jae Chung
{"title":"Development of Mesenchymal Stem Cell Encoded with Myogenic Gene for Treating Radiation-Induced Muscle Fibrosis.","authors":"In Gul Kim, So Young Eom, Hana Cho, Yewon Kim, Saeyeon Hwang, Hyunsoo Kim, Jungirl Seok, Seok Chung, Hye-Joung Kim, Eun-Jae Chung","doi":"10.1089/scd.2024.0073","DOIUrl":"10.1089/scd.2024.0073","url":null,"abstract":"<p><p>Radiation therapy (RT) is a typical treatment for head and neck cancers. However, prolonged irradiation of the esophagus can cause esophageal fibrosis due to increased reactive oxygen species and proinflammatory cytokines. The objective of this study was to determine whether myogenic gene-transfected mesenchymal stem cells (MSCs) could ameliorate damage to esophageal muscles in a mouse model of radiation-induced esophageal fibrosis. We cloned esophageal myogenic genes (MyoD, MyoG, and Myf6) using plasmid DNA. Afterward, myogenic genes were transfected into Human Mesenchymal Stem Cells (hMSCs) using electroporation. Gene transfer efficiency, stemness, and myogenic gene profile were examined using flow cytometry, quantitative polymerase chain reaction, and RNA sequencing. In vivo efficacy of gene-transfected hMSCs was demonstrated through histological and gene expression analyses using a radiation-induced esophageal fibrosis animal model. We have confirmed that the gene transfer efficiency was high (∼75%). Pluripotency levels in gene-transfected MSCs were significantly decreased compared with those in the control (vector). Particularly, myogenesis-related genes such as OAS2, OAS3, and HSPA1A were overexpressed in the group transfected with three genes. At 4 weeks after injection, it was found that thickness collagen layer and esophageal muscle in MSCs transfected with all three genes were significantly reduced compared to those in the saline group. Muscularis mucosa was observed prominently in the gene combination group. Moreover, expression levels of myogenin, Myf6, calponin, and SM22α known to be specific markers of esophageal muscles tended to increase in the group transfected with three genes. Therefore, using gene-transfected MSCs has the potential as a promising therapy against radiation-induced esophageal fibrosis.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142305274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.","authors":"Hao-Yuan Chen, Yin-Cheng Huang, Tu-Hsueh Yeh, Chia-Wei Chang, Yang-Jin Shen, Yi-Chieh Chen, Mu-Qun Sun, Yi-Chuan Cheng","doi":"10.1089/scd.2023.0247","DOIUrl":"10.1089/scd.2023.0247","url":null,"abstract":"<p><p>Traumatic injury to the spinal cord can lead to significant, permanent disability. Mammalian spinal cords are not capable of regeneration; in contrast, adult zebrafish are capable of such regeneration, fully recovering motor function. Understanding the mechanisms underlying zebrafish neuroregeneration may provide useful information regarding endogenous regenerative potential and aid in the development of therapeutic strategies in humans. DELTEX proteins (DTXs) regulate a variety of cellular processes. However, their role in neural regeneration has not been described. We found that zebrafish <i>dtx2</i>, encoding Deltex E3 ubiquitin ligase 2, is expressed in ependymo-radial glial cells in the adult spinal cord. After spinal cord injury, the heterozygous <i>dtx2</i> mutant fish motor function recovered quicker than that of the wild-type controls. The mutant fish displayed increased ependymo-radial glial cell proliferation and augmented motor neuron formation. Moreover, <i>her</i> gene expression, downstream of Notch signaling, increased in Dtx2 mutants. Notch signaling inactivation by dominant-negative Rbpj abolished the increased ependymo-radial glia proliferation caused by Dtx2 deficiency. These results indicate that ependymo-radial glial proliferation is induced by Dtx2 deficiency by activating Notch-Rbpj signaling to improve spinal cord regeneration and motor function recovery.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Endothelial Cell Is Not Simply an Endothelial Cell.","authors":"Shiwani Limbu, Kara E McCloskey","doi":"10.1089/scd.2024.0088","DOIUrl":"10.1089/scd.2024.0088","url":null,"abstract":"<p><p>Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stanniocalcin 2 Promotes Neuronal Differentiation in Neural Stem/Progenitor Cells of the Mouse Subventricular Zone Through Activation of AKT Pathway.","authors":"Zhenyu Guo, Hanyue Zhang, Xinbate Jingele, Jing Yan, Xinxiang Wang, Yingxi Liu, Tingqin Huang, Chongxiao Liu","doi":"10.1089/scd.2024.0094","DOIUrl":"10.1089/scd.2024.0094","url":null,"abstract":"<p><p>Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone (SVZ) throughout life, responding to various pathophysiological stimuli and playing a crucial role in central nervous system repair. Although numerous studies have elucidated the role of stanniocalcin 2 (STC2) in regulating cell differentiation processes, its specific function in NSPCs differentiation remains poorly understood. Clarifying the role of STC2 in NSPCs is essential for devising novel strategies to enhance the intrinsic potential for brain regeneration postinjury. Our study revealed the expression of STC2 in NSPCs derived from the SVZ of the C57BL/6N mouse. In cultured SVZ-derived NSPCs, STC2 treatment significantly increased the number of Tuj1 and DCX-positive cells. Furthermore, STC2 injection into the lateral ventricle promoted the neuronal differentiation of NSPCs and migration to the olfactory bulb. Conversely, the STC2 knockdown produced the opposite effect. Further investigation showed that STC2 treatment enhanced AKT phosphorylation in cultured NSPCs, whereas STC2 inhibition hindered AKT activation. Notably, the neuronal differentiation induced by STC2 was blocked by the AKT inhibitor GSK690693, whereas the AKT activator SC79 reversed the impact of STC2 knockdown on neuronal differentiation. Our findings indicate that enhancing STC2 expression in SVZ-derived NSPCs facilitates neuronal differentiation, with AKT regulation potentially serving as a key intracellular target of STC2 signaling.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas
{"title":"Modeling Choroideremia Disease with Isogenic Induced Pluripotent Stem Cells.","authors":"Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas","doi":"10.1089/scd.2024.0105","DOIUrl":"10.1089/scd.2024.0105","url":null,"abstract":"<p><p>Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the <i>CHM</i> gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cleft Palate Induced by Augmented Fibroblast Growth Factor-9 Signaling in Cranial Neural Crest Cells in Mice.","authors":"Chensheng Lin, Shiyu Liu, Ningsheng Ruan, Jiang Chen, YiPing Chen, Yanding Zhang, Jian Zhang","doi":"10.1089/scd.2024.0077","DOIUrl":"10.1089/scd.2024.0077","url":null,"abstract":"<p><p>Although enhanced fibroblast growth factor (FGF) signaling has been demonstrated to be crucial in many cases of syndromic cleft palate caused by tongue malposition in humans, animal models that recapitulate this phenotype are limited, and the precise mechanisms remain elusive. Mutations in <i>FGF9</i> with the effect of either loss- or gain-of-function effects have been identified to be associated with cleft palate in humans. Here, we generated a mouse model with a transgenic <i>Fgf9</i> allele specifically activated in cranial neural crest cells, aiming to elucidate the gain-of-function effects of <i>Fgf9</i> in palatogenesis. We observed cleft palate with 100% penetrance in mutant mice. Further analysis demonstrated that no inherent defects in the morphogenic competence of palatal shelves could be found, but a passively lifted tongue prevented the elevation of palatal shelves, leading to the cleft palate. This tongue malposition was induced by posterior spatial confinement that was exerted by temporomandibular joint (TMJ) dysplasia characterized by a reduction in Sox9+ progenitors within the condyle and a structural decrease in the posterior dimension of the lower jaw. Our findings highlight the critical role of excessive FGF signaling in disrupting spatial coordination during palate development and suggest a potential association between palatal shelf elevation and early TMJ development.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meilin Hu, Ruiqi Liu, Xiaoyu Chen, Shen Yan, Jian Gao, Yao Zhang, Di Wu, Lu Sun, Zhi Jia, Guangyunhao Sun, Dayong Liu
{"title":"Metabolomics Dysfunction in Replicative Senescence of Periodontal Ligament Stem Cells Regulated by AMPK Signaling Pathway.","authors":"Meilin Hu, Ruiqi Liu, Xiaoyu Chen, Shen Yan, Jian Gao, Yao Zhang, Di Wu, Lu Sun, Zhi Jia, Guangyunhao Sun, Dayong Liu","doi":"10.1089/scd.2024.0112","DOIUrl":"10.1089/scd.2024.0112","url":null,"abstract":"<p><p>Periodontal ligament mesenchymal stem cells (PDLSCs) are a promising cell resource for stem cell-based regenerative medicine in dentistry, but they inevitably acquire a senescent phenotype after prolonged in vitro expansion. The key regulators of PDLSCs during replicative senescence remain unclear. Here, we sought to elucidate the role of metabolomic changes in determining the cellular senescence of PDLSCs. PDLSCs were cultured to passages 4, 10, and 20. The senescent phenotypes of PDLSCs were detected, and metabolomics analysis was performed. We found that PDLSCs manifested senescence phenotype during passaging. Metabolomics analysis showed that the metabolism of replicative senescence in PDLSCs varied significantly. The AMP-activated protein kinase (AMPK) signaling pathway was closely related to adenosine monophosphate (AMP) levels. The AMP:ATP ratio increased in senescent PDLSCs; however, the levels of p-AMPK, <i>FOXO1</i> and <i>FOXO3a</i> decreased with senescence. We treated PDLSCs with an activator of the AMPK pathway (AICAR) and observed that the phosphorylated AMPK level at P20 PDLSCs was partially restored. These data delineate that the metabolic process of PDLSCs is active in the early stage of senescence and attenuated in the later stages of senescence; however, the sensitivity of AMPK phosphorylation sites is impaired, causing senescent PDLSCs to fail to respond to changes in energy metabolism.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142305275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaping Xu, Xiangli Zhang, Zhikun Fu, Yan Dong, Yuexin Yu, Yingtian Liu, Ziyu Liu, Jinfu Chen, Yao Yao, Yan Chen, Jer Ping Ooi, Bakiah Shaharuddin, Bin Yang, Jun Jie Tan, Zhikun Guo
{"title":"Intrapericardial Administration of Human Pericardial Fluid Cells Improves Cardiac Functions in Rats with Heart Failure.","authors":"Yaping Xu, Xiangli Zhang, Zhikun Fu, Yan Dong, Yuexin Yu, Yingtian Liu, Ziyu Liu, Jinfu Chen, Yao Yao, Yan Chen, Jer Ping Ooi, Bakiah Shaharuddin, Bin Yang, Jun Jie Tan, Zhikun Guo","doi":"10.1089/scd.2024.0072","DOIUrl":"10.1089/scd.2024.0072","url":null,"abstract":"<p><p>Heart failure (HF) is still the main cause of mortality worldwide. This study investigated the characteristics of human pericardial fluid-derived cells (hPFCs) and their effects in treating doxorubicin (DOX)-induced HF rats through intrapericardial injection. hPFCs were isolated from patients who underwent heart transplantation (<i>N</i> = 5). These cells that primarily expressed SCA-1, NANOG, and mesenchymal markers, CD90, CD105, and CD73, were able to form adipocytes, osteoblasts, and cardiomyocytes in vitro. Passage 3 hPFCs (2.5 × 10<sup>5</sup> cells/heart) were injected into the pericardial cavity of the DOX-injured rat hearts, significantly improving cardiac functions after 4 weeks. The tracked and engrafted red fluorescent protein-tagged hPFCs coexpressed cardiac troponin T and connexin 43 after 4 weeks in the host myocardium. This observation was also coupled with a significant reduction in cardiac fibrosis following hPFC treatment <i>(P</i> < 0.0001 vs. untreated). The elevated inflammatory cytokines interleukin (IL)-6, IL-10, and tumor necrosis factor-α in the DOX-treated hearts were found to be significantly reduced (<i>P</i> < 0.001 vs. untreated), while the regional proangiogenic vascular endothelial growth factor A (VEGFA) level was increased in the hPFC-treated group after 4 weeks (<i>P</i> < 0.05 vs. untreated). hPFCs possess stem cell characteristics and can improve the cardiac functions of DOX-induced HF rats after 4 weeks through pericardial administration. The improvements were attributed to a significant reduction in cardiac fibrosis, inflammation, and elevated regional proangiogenesis factor VEGFA, with evidence of cellular engraftment and differentiation in the host myocardium.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}