Extracellular Vesicles from Mesenchymal Stromal Cells Modulate Inflammatory Responses on Feline Mixed Glia.

Nikolia Darzenta, Emily Davis, Anna Cochran, Matthew Murray, Olivia Moore, Maria C Naskou
{"title":"Extracellular Vesicles from Mesenchymal Stromal Cells Modulate Inflammatory Responses on Feline Mixed Glia.","authors":"Nikolia Darzenta, Emily Davis, Anna Cochran, Matthew Murray, Olivia Moore, Maria C Naskou","doi":"10.1089/scd.2025.0042","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular vesicles (EVs) secreted by mesenchymal stromal cells (MSC-EVs) exhibit immunoregulatory functions dependent on their parent cells. MSC-EVs are promising candidates for treating neuroinflammation in neurological diseases due to their acellular nature and their ability to reach the central nervous system. However, the conditions of MSCs for producing EVs with the highest anti-inflammatory efficacy are still unknown. Therefore, the first objective was to study the characteristics of the EVs produced by MSCs cultured in different conditions. The second objective was to evaluate the <i>in vitro</i> anti-inflammatory properties of those EVs in feline stimulated mixed glia. Umbilical cord-derived MSCs were treated with serum-free (SF) media, inflammatory (IF) media, or media supplemented with 5% EV-depleted fetal bovine serum (FBS). The isolated MSC-EVs were characterized by particle size and yield, and their anti-inflammatory ability was evaluated in lipopolysaccharide (LPS) stimulated feline mixed glia. All EV isolates were <160 nm, and the primary mixed glia consisted of microglia, astrocytes, neurons, and endothelial cells. Our results indicate that IF-EVs statistically significantly decreased the production of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) and downregulated the transcription of the, nuclear factor kappa B p65 subunit in inflammatory mixed glia after 48 hours. In addition, SF- and FBS-EVs significantly reduced <i>in vitro</i> the secretion of IL-6 after 48 hours<i>,</i> but only SF-EVs achieved a significant effect on inhibiting the expression of p65 at 48 hours. Moreover, messenger RNA (mRNA) levels of inducible nitric oxide synthase (iNOS) were significantly decreased following treatment with SF-EV for 24 hours. This study demonstrates that MSC culture conditions affect the therapeutic potential of the secreted EVs in feline mixed glia.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2025.0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The extracellular vesicles (EVs) secreted by mesenchymal stromal cells (MSC-EVs) exhibit immunoregulatory functions dependent on their parent cells. MSC-EVs are promising candidates for treating neuroinflammation in neurological diseases due to their acellular nature and their ability to reach the central nervous system. However, the conditions of MSCs for producing EVs with the highest anti-inflammatory efficacy are still unknown. Therefore, the first objective was to study the characteristics of the EVs produced by MSCs cultured in different conditions. The second objective was to evaluate the in vitro anti-inflammatory properties of those EVs in feline stimulated mixed glia. Umbilical cord-derived MSCs were treated with serum-free (SF) media, inflammatory (IF) media, or media supplemented with 5% EV-depleted fetal bovine serum (FBS). The isolated MSC-EVs were characterized by particle size and yield, and their anti-inflammatory ability was evaluated in lipopolysaccharide (LPS) stimulated feline mixed glia. All EV isolates were <160 nm, and the primary mixed glia consisted of microglia, astrocytes, neurons, and endothelial cells. Our results indicate that IF-EVs statistically significantly decreased the production of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) and downregulated the transcription of the, nuclear factor kappa B p65 subunit in inflammatory mixed glia after 48 hours. In addition, SF- and FBS-EVs significantly reduced in vitro the secretion of IL-6 after 48 hours, but only SF-EVs achieved a significant effect on inhibiting the expression of p65 at 48 hours. Moreover, messenger RNA (mRNA) levels of inducible nitric oxide synthase (iNOS) were significantly decreased following treatment with SF-EV for 24 hours. This study demonstrates that MSC culture conditions affect the therapeutic potential of the secreted EVs in feline mixed glia.

间充质间质细胞胞外囊泡调节猫混合胶质细胞的炎症反应。
间充质基质细胞(msc - ev)分泌的细胞外囊泡(EVs)表现出依赖于其亲本细胞的免疫调节功能。msc - ev由于其非细胞性和到达中枢神经系统的能力,是治疗神经系统疾病中神经炎症的有希望的候选者。然而,MSCs产生具有最高抗炎功效的ev的条件尚不清楚。因此,第一个目的是研究在不同条件下培养的MSCs产生的ev的特性。第二个目的是评估这些ev在猫刺激的混合胶质细胞中的体外抗炎特性。脐带来源的MSCs分别用无血清(SF)培养基、炎症(IF)培养基或添加5% ev -贫胎牛血清(FBS)的培养基处理。对分离得到的msc - ev进行粒径和产率表征,并在脂多糖刺激的猫混合胶质细胞中评价其抗炎能力。所有EV分离株在体外培养48 h后均能分泌IL-6,但只有sf -EV在48 h时能显著抑制p65的表达。此外,SF-EV处理24小时后,诱导型一氧化氮合酶(iNOS)信使RNA (mRNA)水平显著降低。本研究表明,间充质干细胞培养条件影响了猫混合胶质细胞分泌ev的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信