Extracellular Vesicles Derived from Type 2 Diabetic Mesenchymal Stem Cells Induce Endothelial Mesenchymal Transition under High Glucose Conditions Through the TGFβ/Smad3 Signaling Pathway.

Stem cells and development Pub Date : 2024-06-01 Epub Date: 2024-06-05 DOI:10.1089/scd.2023.0262
Cat-Khanh Vuong, Mizuho Fukushige, Nhat-Hoang Ngo, Toshiharu Yamashita, Mana Obata-Yasuoka, Hiromi Hamada, Motoo Osaka, Toru Tsukada, Yuji Hiramatsu, Osamu Ohneda
{"title":"Extracellular Vesicles Derived from Type 2 Diabetic Mesenchymal Stem Cells Induce Endothelial Mesenchymal Transition under High Glucose Conditions Through the TGFβ/Smad3 Signaling Pathway.","authors":"Cat-Khanh Vuong, Mizuho Fukushige, Nhat-Hoang Ngo, Toshiharu Yamashita, Mana Obata-Yasuoka, Hiromi Hamada, Motoo Osaka, Toru Tsukada, Yuji Hiramatsu, Osamu Ohneda","doi":"10.1089/scd.2023.0262","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is associated with endothelial dysfunction, which results in delayed wound healing. Mesenchymal stem cells (MSCs) play a vital role in supporting endothelial cells (ECs) and promoting wound healing by paracrine effects through their secretome-containing extracellular vesicles. We previously reported the impaired wound healing ability of adipose tissue-derived MSC from T2DM donors; however, whether extracellular vesicles isolated from T2DM adipose tissue-derived MSCs (dEVs) exhibit altered functions in comparison to those derived from healthy donors (nEVs) is still unclear. In this study, we found that nEVs induced EC survival and angiogenesis, whereas dEVs lost these abilities. In addition, under high glucose conditions, nEV protected ECs from endothelial-mesenchymal transition (EndMT), whereas dEV significantly induced EndMT by activating the transforming growth factor-β/Smad3 signaling pathway, which impaired the tube formation and in vivo wound healing abilities of ECs. Interestingly, the treatment of dEV-internalized ECs with nEVs rescued the induced EndMT effects. Of note, the internalization of nEV into T2DM adipose tissue-derived MSC resulted in the production of an altered n-dEV, which inhibited EndMT and supported the survival of T2DM db/db mice from severe wounds. Taken together, our findings suggest the role of dEV in endothelial dysfunction and delayed wound healing in T2DM by the promotion of EndMT. Moreover, nEV treatment can be considered a promising candidate for cell-free therapy to protect ECs in T2DM.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"262-275"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2023.0262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes mellitus (T2DM) is associated with endothelial dysfunction, which results in delayed wound healing. Mesenchymal stem cells (MSCs) play a vital role in supporting endothelial cells (ECs) and promoting wound healing by paracrine effects through their secretome-containing extracellular vesicles. We previously reported the impaired wound healing ability of adipose tissue-derived MSC from T2DM donors; however, whether extracellular vesicles isolated from T2DM adipose tissue-derived MSCs (dEVs) exhibit altered functions in comparison to those derived from healthy donors (nEVs) is still unclear. In this study, we found that nEVs induced EC survival and angiogenesis, whereas dEVs lost these abilities. In addition, under high glucose conditions, nEV protected ECs from endothelial-mesenchymal transition (EndMT), whereas dEV significantly induced EndMT by activating the transforming growth factor-β/Smad3 signaling pathway, which impaired the tube formation and in vivo wound healing abilities of ECs. Interestingly, the treatment of dEV-internalized ECs with nEVs rescued the induced EndMT effects. Of note, the internalization of nEV into T2DM adipose tissue-derived MSC resulted in the production of an altered n-dEV, which inhibited EndMT and supported the survival of T2DM db/db mice from severe wounds. Taken together, our findings suggest the role of dEV in endothelial dysfunction and delayed wound healing in T2DM by the promotion of EndMT. Moreover, nEV treatment can be considered a promising candidate for cell-free therapy to protect ECs in T2DM.

通过 TGFb/Smad2-3 信号通路诱导高血糖条件下内皮间充质转化的 2 型糖尿病间充质干细胞衍生的细胞外囊泡
2型糖尿病(T2DM)与内皮功能障碍有关,内皮功能障碍会导致伤口愈合延迟。间充质干细胞(MSC)在支持内皮细胞(EC)和通过其含有分泌物的细胞外囊泡的旁分泌效应促进伤口愈合方面发挥着重要作用。我们以前曾报道过来自 T2DM 供体的脂肪组织间充质干细胞的伤口愈合能力受损;然而,与来自健康供体(nEV)的间充质干细胞相比,从 T2DM 脂肪组织间充质干细胞(dEV)分离出的细胞外囊泡是否表现出改变的功能仍不清楚。在本研究中,我们发现 nEV 能诱导 EC 存活和血管生成,而 dEV 则丧失了这些能力。此外,在高糖条件下,nEV 能保护心血管内皮细胞免于内皮间质转化(EndMT),而 dEV 则能通过激活 TGF/Smad3 信号通路显著诱导 EndMT,从而损害心血管内皮细胞的管形成和体内伤口愈合能力。有趣的是,用nEV处理内化了dEV的EC可以缓解诱导的EndMT效应。值得注意的是,nEV 内化到 T2DM 衍生的脂肪组织-间充质干细胞中会产生一种改变的 n-dEV,它能抑制 EndMT 并支持 T2DM db/db 小鼠从严重伤口中存活。综上所述,我们的研究结果表明,dEV 在 T2DM 的内皮功能障碍和伤口愈合延迟中起着促进 EndMT 的作用。此外,nEV 治疗可被视为保护 T2DM 中内皮细胞的一种有希望的无细胞疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信