Soft robotics最新文献

筛选
英文 中文
3D Printed Magnetic Bionic Robot Inspired by Octopus for Drug Transportation. 受章鱼启发的3D打印磁性仿生机器人用于毒品运输。
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-06-19 DOI: 10.1089/soro.2023.0055
Chen Feng, Xu Zhiqiang, Chen Kewen, Wang Xiaodong, Jiang Shengqiang
{"title":"3D Printed Magnetic Bionic Robot Inspired by Octopus for Drug Transportation.","authors":"Chen Feng, Xu Zhiqiang, Chen Kewen, Wang Xiaodong, Jiang Shengqiang","doi":"10.1089/soro.2023.0055","DOIUrl":"10.1089/soro.2023.0055","url":null,"abstract":"<p><p>The octopus has attracted widespread attention owing to its unique underwater movement and its ability to escape with inkjets, which also promoted the development of underwater bionic robots. This study introduces a magnetic octopus robot (MOR) 3D printed with PA6/NdFeB composite material, which has good magnetic responsiveness and rigidity to cope with complex environments. The MOR can roll and rotate through complex terrain and passages because of its eight-claw structure. It also has amphibious locomotion and can pass through narrow gaps of 37.5% of its height by deformation. In addition, the MOR can not only clamp, transport, and release solids but also liquids by adding silicone hollow spheres, which indicates the potential of the MOR to be used in medical applications for transporting solid or liquid drugs. This research will help broaden the application prospects of magnetron robots in the field of medical drug transportation.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":"11 6","pages":"1068-1077"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance for Assistance: Upper-Limb Assistive Soft Robotic Suit Using Linked-Layer Jamming Mechanisms. 辅助阻抗:使用链接层干扰机构的上肢辅助软机器人套装。
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-11-29 DOI: 10.1089/soro.2023.0146
Namho Kim, Jonghoon Park, Dongjun Shin
{"title":"Impedance for Assistance: Upper-Limb Assistive Soft Robotic Suit Using Linked-Layer Jamming Mechanisms.","authors":"Namho Kim, Jonghoon Park, Dongjun Shin","doi":"10.1089/soro.2023.0146","DOIUrl":"10.1089/soro.2023.0146","url":null,"abstract":"<p><p>Wearable robots, especially those composed of soft materials, are increasingly attracting interest due to their comfort, ease of donning and doffing, and their ability to provide assistance across various applications. In wearable robotics, striking a balance between ensuring low impedance for wearer comfort and providing sufficient assistive force is a notable design challenge. In this study, we propose exploiting impedance variation in accordance with the types of muscle contraction in the human body. Particularly in eccentric muscle contraction, the impedance can help reduce the muscular load, since it exerts force in the same direction as the muscles. To utilize the relation, we proposed a linked-layer jamming mechanism, which adjusts its impedance largely in various directions. This mechanism allows not only a broad variable range of impedance in multiple rotation directions but also directional torque design, even when equipped in human multi-degree-of-freedom (DoF) joints. By constructing a wearable robot prototype equipped with the proposed linked-layer jamming mechanisms, the effectiveness of this impedance-based assistance approach was confirmed through experiments. The findings from this study present new possibilities in wearable robot design, showing that suitably amplified impedance can assist human motion, potentially enhancing task efficiency and lowering injury risk. This work thus offers a new perspective for researchers in the field of wearable robots, demonstrating that impedance, often minimized in existing designs, can be utilized beneficially when properly amplified.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"970-983"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Reconfigurable Soft Linkage Robot via Internal "Virtual" Joints. 通过内部 "虚拟 "关节实现可重构的软连接机器人
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-04-29 DOI: 10.1089/soro.2023.0177
Mingsong Jiang, Jiansong Wang, Nicholas Gravish
{"title":"A Reconfigurable Soft Linkage Robot via Internal \"Virtual\" Joints.","authors":"Mingsong Jiang, Jiansong Wang, Nicholas Gravish","doi":"10.1089/soro.2023.0177","DOIUrl":"10.1089/soro.2023.0177","url":null,"abstract":"<p><p>Traditional robots derive their capabilities of movement through rigid structural \"links\" and discrete actuated \"joints.\" Alternatively, soft robots are composed of flexible materials that permit movement across a continuous range of their body and appendages and thus are not restricted in where they can bend. While trade-offs between material choices may restrain robot functionalities within a narrow spectrum, we argue that bridging the functional gaps between soft and hard robots can be achieved from a hybrid design approach that utilizes both the reconfigurability and the controllability of traditional soft and hard robot paradigms. In this study, we present a hybrid robot with soft inflated \"linkages,\" and rigid internal joints that can be spatially reconfigured. Our method is based on the geometric pinching of an inflatable beam to form mechanical pinch-joints connecting the inflated robot linkages. Such joints are activated and controlled via internal motorized modules that can be relocated for on-demand joint-linkage configurations. We demonstrate two applications that utilize joint reconfigurations: a deployable robot manipulator and a terrestrial crawling robot with tunable gaits.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"946-957"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Soft Inductive Bimodal Sensor for Proprioception and Tactile Sensing of Soft Machines. 用于软机器的推进感知和触觉感应的软感应式双模传感器
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-06-13 DOI: 10.1089/soro.2023.0249
Yulian Peng, Houping Wu, Zhengyan Wang, Yufeng Wang, Hongbo Wang
{"title":"A Soft Inductive Bimodal Sensor for Proprioception and Tactile Sensing of Soft Machines.","authors":"Yulian Peng, Houping Wu, Zhengyan Wang, Yufeng Wang, Hongbo Wang","doi":"10.1089/soro.2023.0249","DOIUrl":"10.1089/soro.2023.0249","url":null,"abstract":"<p><p>The somatosensory system is crucial for living beings to survive and thrive in complex environments and to interact with their surroundings. Similarly, rapidly developed soft robots need to be aware of their own posture and detect external stimuli. Bending and force sensing are key for soft machines to achieve embodied intelligence. Here, we present a soft inductive bimodal sensor (SIBS) that uses the strain modulation of magnetic permeability and the eddy-current effect for simultaneous bidirectional bending and force sensing with only two wires. The SIBS is made of a flexible planar coil, a porous ferrite film, and a soft conductive film. By measuring the inductance at two different frequencies, the bending angle and force can be obtained and decoupled. Rigorous experiments revealed that the SIBS can achieve high resolution (0.44° bending and 1.09 mN force), rapid response, excellent repeatability, and high durability. A soft crawling robot embedded with one SIBS can sense its own shape and interact with and respond to external stimuli. Moreover, the SIBS is demonstrated as a wearable human-machine interaction to control a crawling robot via wrist bending and touching. This highlights that the SIBS can be readily implemented in diverse applications for reliable bimodal sensing.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"1055-1067"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Reconfigurable Origami-Based Vacuum Pneumatic Artificial Muscles for Versatile Robotic System. 用于多功能机器人系统的可重构折纸真空气动人工肌肉的设计与分析
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-04-26 DOI: 10.1089/soro.2023.0050
Jin-Gyu Lee, Hugo Rodrigue
{"title":"Design and Analysis of Reconfigurable Origami-Based Vacuum Pneumatic Artificial Muscles for Versatile Robotic System.","authors":"Jin-Gyu Lee, Hugo Rodrigue","doi":"10.1089/soro.2023.0050","DOIUrl":"10.1089/soro.2023.0050","url":null,"abstract":"<p><p>In this study, a vacuum-based modular actuator system named reconfigurable origami-based vacuum pneumatic artificial muscles (ROV-PAMs) is presented. The system consists of six types of actuating modules and three types of fluidic supporting modules each embedded with magnet-based connectors so that the modules can be assembled to modify the system behavior. The module can be used in a myriad of ways, including extending their working range, creating complex geometries upon deformation, and cooperating to improve overall performance. A simple analytical model for the actuating modules is derived based on the law of conservation of energy, and the model is verified experimentally which shows that this intuitive model can provide a reasonable prediction of performance. A block sorting robot is built using three different types of actuating modules with multiple fluidic supporting modules, and the robot shows that it is possible to flexibly and easily assemble modules to build a robot capable of completing diverse tasks. The ROV-PAM module and its concept can be applied to realize robotic designs, which can be altered on-the-fly to adjust its functionality to meet the evolving requirements required for truly flexible automation.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"984-993"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking Versatility: Magnetic-Actuated Deployable Suction Gripper for Complex Surface Handling. 释放多功能性:用于复杂表面处理的磁动可展开吸力夹具。
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-06-05 DOI: 10.1089/soro.2023.0250
Vera G Kortman, Ellen de Vries, Jovana Jovanova, Aimée Sakes
{"title":"Unlocking Versatility: Magnetic-Actuated Deployable Suction Gripper for Complex Surface Handling.","authors":"Vera G Kortman, Ellen de Vries, Jovana Jovanova, Aimée Sakes","doi":"10.1089/soro.2023.0250","DOIUrl":"10.1089/soro.2023.0250","url":null,"abstract":"<p><p>Suction grippers offer a distinct advantage in their ability to handle a wide range of items. However, attaching these grippers to irregular and rough surfaces presents an ongoing challenge. To address this obstacle, this study explores the integration of magnetic intelligence into a soft suction gripper design, enabling fast external magnetic actuation of the attachment process. Additionally, miniaturization options are enhanced by implementing a compliant deploying mechanism. The resulting design is the first-of-its-kind magnetically-actuated deployable suction gripper featuring a thin magnetic membrane (Ø 50 mm) composed of carbonyl iron particles embedded in a silicone matrix. This membrane is supported by a frame made of superelastic nitinol wires that facilitate deployment. During experiments, the proof-of-principle prototype demonstrates successful attachment on a diverse range of curved surfaces in both dry and wet environments. The gripper achieves attachment on curved surfaces with radii of 50-75 mm, exerting a maximum attachment force of 2.89 ± 0.54 N. The current gripper design achieves a folding percentage of 75%, enabling it to fit into a Ø 12.5 mm tube and access hard-to-reach areas while maintaining sufficient surface area for attachment forces. The proposed prototype serves as a foundational steppingstone for further research in the development of reliable and effective magnetically-actuated suction grippers across various configurations. By addressing the limitations of attachment to irregular surfaces and exploring possibilities for miniaturization and precise control, this study opens new avenues for the practical application of suction grippers in diverse industries and scenarios.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"1020-1031"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Octopus Suction Cup with Attachment Force Self-Sensing Capability for Cardiac Adhesion. 具有附着力自感应功能的仿生章鱼吸盘用于心脏粘附。
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-07-09 DOI: 10.1089/soro.2023.0208
Ziwei Wang, Guangkai Sun, Xinwei Fan, Peng Xiao, Lianqing Zhu
{"title":"Biomimetic Octopus Suction Cup with Attachment Force Self-Sensing Capability for Cardiac Adhesion.","authors":"Ziwei Wang, Guangkai Sun, Xinwei Fan, Peng Xiao, Lianqing Zhu","doi":"10.1089/soro.2023.0208","DOIUrl":"10.1089/soro.2023.0208","url":null,"abstract":"<p><p>This study develops a biomimetic soft octopus suction device with integrated self-sensing capabilities designed to enhance the precision and safety of cardiac surgeries. The device draws inspiration from the octopus's exceptional ability to adhere to various surfaces and its sophisticated proprioceptive system, allowing for real-time adjustment of adhesive force. The research integrates thin-film pressure sensors into the soft suction cup design, emulating the tactile capabilities of an octopus's sucker to convey information about the contact environment in real time. Signals from sensors within soft materials exhibiting complex strain characteristics are processed and interpreted using the grey wolf optimizer-back propagation (GWO-BP) algorithm. The tissue stabilizer is endowed with the self-sensing capabilities of biomimetic octopus suckers, and real-time feedback on the adhesion state is provided. The embedding location of the thin-film pressure sensors is determined through foundational experiments with flexible substrates, standard spherical tests, and biological tissue trials. The newly fabricated suction cups undergo compression pull-off tests to collect data. The GWO-BP algorithm model accurately identifies and predicts the suction cup's adhesion force in real time, with an error rate below 0.97% and a mean prediction time of 0.0027 s. Integrating this technology offers a novel approach to intelligent monitoring and attachment assurance during cardiac surgeries. Hence, the probability of potential cardiac tissue damage is reduced, with future applications for integrating intelligent biomimetic adhesive soft robotics.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"1043-1054"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perceptually Inspired C0-Continuity Haptic Shape Display with Trichamber Soft Actuators. 使用三腔软致动器的感知启发式 C0-连续性触觉形状显示器
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-05-02 DOI: 10.1089/soro.2023.0148
Zemin Wang, Yan Zhang, Dongjie Zhao, Ruibo He, Yuru Zhang, Dangxiao Wang
{"title":"Perceptually Inspired C<sup>0</sup>-Continuity Haptic Shape Display with Trichamber Soft Actuators.","authors":"Zemin Wang, Yan Zhang, Dongjie Zhao, Ruibo He, Yuru Zhang, Dangxiao Wang","doi":"10.1089/soro.2023.0148","DOIUrl":"10.1089/soro.2023.0148","url":null,"abstract":"<p><p>Shape display devices composed of actuation pixels enable dynamic rendering of surface morphological features, which have important roles in virtual reality and metaverse applications. The traditional pin-array solution produces sidestep-like structures between neighboring pins and normally relies on high-density pins to obtain curved surfaces. It remains a challenge to achieve continuous curved surfaces using a small number of actuated units. To address the challenge, we resort to the concept of surface continuity in computational geometry and develop a C<sup>0</sup>-continuity shape display device with trichamber fiber-reinforced soft actuators. Each trichamber unit produces three-dimensional (3D) deformation consisting of elongation, pitch, and yaw rotation, thus ensuring rendered surface continuity using low-resolution actuation units. Inspired by human tactile discrimination threshold on height and angle gradients between adjacent units, we proposed the mathematical criteria of C<sup>0</sup>-continuity shape display and compared the maximal number of distinguishable shapes using the proposed device in comparison with typical pin-array. We then established a shape control model considering the nonlinearity of soft materials to characterize and control the soft device to display C<sup>0</sup>-continuity shapes. Experimental results showed that the proposed device with nine trichamber units could render typical sets of distinguishable C<sup>0</sup>-continuity shape sequence changes. We envision that the concept of C<sup>0</sup>-continuity shape display with 3D deformation capability could improve the fidelity of the rendered shapes in many metaverse scenarios such as touching human organs in medical palpation simulations.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"958-969"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Do Combustions Actuate High-Speed Soft Robots? 燃烧如何驱动高速软体机器人?
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-07-27 DOI: 10.1089/soro.2023.0168
Yang Yang, Hongliang Ren, Pengcheng Jiao, Zhiguo He
{"title":"How Do Combustions Actuate High-Speed Soft Robots?","authors":"Yang Yang, Hongliang Ren, Pengcheng Jiao, Zhiguo He","doi":"10.1089/soro.2023.0168","DOIUrl":"10.1089/soro.2023.0168","url":null,"abstract":"<p><p>The combustion actuation method opens a unique pathway for high-performance soft robots, allowing for high accelerations in multifunctional applications. Along with multifunctionality come great challenges in effective robot structure design, accurate control and prediction of combustion-actuated motions, and practical implementation of various applications. However, research in this nascent field remains fragmented, lacking central guiding principles. To systematize these works, this review article summarizes state-of-the-art technologies in combustion-actuated soft robots, addressing three key questions: How to design a combustion-enabled soft robot? How to predict its movements and control it? and How to practically apply it.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"911-923"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Soft Catheter Robot System for Minimally Invasive Treatments of Articular Cartilage Defects. 用于微创治疗关节软骨缺损的磁性软导管机器人系统
Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-05-30 DOI: 10.1089/soro.2023.0157
Jiarong Hu, Yufei Hou, Gu Wangxie, Songyu Hu, An Liu, Wushi Cui, Weinan Yang, Yong He, Jianzhong Fu
{"title":"Magnetic Soft Catheter Robot System for Minimally Invasive Treatments of Articular Cartilage Defects.","authors":"Jiarong Hu, Yufei Hou, Gu Wangxie, Songyu Hu, An Liu, Wushi Cui, Weinan Yang, Yong He, Jianzhong Fu","doi":"10.1089/soro.2023.0157","DOIUrl":"10.1089/soro.2023.0157","url":null,"abstract":"<p><p>Articular cartilage defects are among the most common orthopedic diseases, which seriously affect patients' health and daily activities, without prompt treatment. The repair biocarrier-based treatment has shown great promise. Total joint injection and open surgery are two main methods to deliver functional repair biocarriers into the knee joint. However, the exhibited drawbacks of these methods hinder their utility. The repair effect of total joint injection is unstable due to the low targeting rate of the repair biocarriers, whereas open surgery causes serious trauma to patients, thereby prolonging the postoperative healing time. In this study, we develop a magnetic soft catheter robot (MSCR) system to perform precise <i>in situ</i> repair of articular cartilage defects with minimal incision. The MSCR processes a size of millimeters, allowing it to enter the joint cavity through a tiny skin incision to reduce postoperative trauma. Meanwhile, a hybrid control strategy combining neural network and visual servo is applied to sequentially complete the coarse and fine positioning of the MSCR on the cartilage defect sites. After reaching the target, the photosensitive hydrogel is injected and anchored into the defect sites through the MSCR, ultimately completing the <i>in situ</i> cartilage repair. The <i>in vitro</i> and <i>ex vivo</i> experiments were conducted on a 3D printed human femur model and an isolated porcine femur, respectively, to demonstrate the potential of our system for the articular cartilage repair.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"1032-1042"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信