Soft roboticsPub Date : 2025-08-01Epub Date: 2025-05-12DOI: 10.1089/soro.2024.0036
Anup Teejo Mathew, Daniel Feliu-Talegon, Yusuf Abdullahi Adamu, Ikhlas Ben Hmida, Costanza Armanini, Cesare Stefanini, Lakmal Seneviratne, Federico Renda
{"title":"ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration.","authors":"Anup Teejo Mathew, Daniel Feliu-Talegon, Yusuf Abdullahi Adamu, Ikhlas Ben Hmida, Costanza Armanini, Cesare Stefanini, Lakmal Seneviratne, Federico Renda","doi":"10.1089/soro.2024.0036","DOIUrl":"10.1089/soro.2024.0036","url":null,"abstract":"<p><p>The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains. The prototype features a central unit based on a Raspberry Pi, connected to a sensory system for inertial, depth, and vision detection, and an acoustic modem for communication. Combined with the implemented control law, it renders ZodiAq an intelligent system. This article details the design and fabrication process of ZodiAq, highlighting design choices and prototype capabilities. Based on the strain-based modeling of Cosserat rods, we have developed a digital twin of the prototype within a simulation toolbox to simplify analysis and control. To optimize its operation in dynamic aquatic conditions, a simplified model-based controller has been developed and implemented, facilitating intelligent and adaptive movement in the hydrodynamic environment. Extensive experimental demonstrations highlight the drone's potential, showcasing its design redundancy, embodied intelligence, crawling gait, and practical applications in diverse underwater settings. This research contributes significantly to the field of underwater soft robotics, offering a promising new avenue for safe, efficient, and environmentally conscious underwater exploration.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"410-422"},"PeriodicalIF":6.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-07-22DOI: 10.1177/21695172251361421
Hongbiao Xiang, Jiahao Lu, Zhuo Chen, Xianghong Zhao, Yanming Cao, Shoujun Wang, Xiaofeng Wang, Lu Yang
{"title":"Bioinspired Multimodal Terrestrial Locomotion of a Soft Quadrupedal Millirobot Driven by Magnetic Torque.","authors":"Hongbiao Xiang, Jiahao Lu, Zhuo Chen, Xianghong Zhao, Yanming Cao, Shoujun Wang, Xiaofeng Wang, Lu Yang","doi":"10.1177/21695172251361421","DOIUrl":"https://doi.org/10.1177/21695172251361421","url":null,"abstract":"<p><p>The ability to achieve controllable multimodal locomotion on complex terrains is crucial for the practical applications of small-scale legged robots. In this study, a novel magnetically actuated soft quadrupedal terrestrial millirobot was designed. Inspired by biological terrestrial locomotion modes, three distinct locomotion modes-quadrupedal bounding, quadrupedal pacing, and bipedal walking-were realized through a combination of various postures under a uniform external magnetic field and asymmetrical friction effects induced by magnetic torque. The characteristics of these modes were examined and compared, including the effects of magnetic field strength, swing angle, and surface roughness on stride length. Furthermore, the line-of-sight control method was implemented in path-tracking experiments, enabling closed-loop control on complex paths and improving tracking accuracy. This research holds significant potential for applying magnetically controlled small-scale robots in the bioengineering and industrial micromanipulation fields.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144715242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SoftSnap: Rapid Prototyping of Untethered Soft Robots Using Snap-Together Modules.","authors":"Luyang Zhao, Yitao Jiang, Chun-Yi She, Muhao Chen, Devin Balkcom","doi":"10.1089/soro.2024.0170","DOIUrl":"https://doi.org/10.1089/soro.2024.0170","url":null,"abstract":"<p><p>Soft robots offer adaptable, safe interactions in complex environments, with the potential for diverse applications, such as mimicking biological motions. One major challenge is designing and prototyping soft robots with varying deformation modes, which can be a time-consuming process. To address this hurdle, reconfigurable modular robots have emerged as a solution, allowing reusable and rapid prototyping into different soft robots. However, balancing simplicity in design with extensive deformation capabilities remains an open problem. Existing reconfigurable soft robotic modules have demonstrated adaptability, often relying on modular stacking to achieve a wide range of deformations. Typically, achieving complex deformations, such as forming a continuous curve, requires multiple modules connected in a chain, as each individual module can only transition between a limited set of predefined deformation states. We introduce SoftSnap modules: snap-together components that enable the rapid assembly of a class of untethered soft robots. Each SoftSnap module integrates computation, motor-driven string actuation, and a flexible thermoplastic polyurethane (TPU)-printed deformable structure, allowing a vast deformation range through different pre-wired string configurations. These modules connect seamlessly with other SoftSnap units or customizable connectors. Demonstrated configurations include starfish-like, brittle star, snake, 3D gripper, and ring-shaped robots, showcasing ease of assembly, adaptability, and functional diversity. The scalable, reconfigurable design of SoftSnap provides researchers with an efficient and flexible platform for rapidly prototyping untethered soft robotic systems.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144259798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Deformation Resistance and Load-Bearing Capacity in Tip-Growing Robots Through Scale-Inspired Layer Jamming Mechanism.","authors":"Pengchun Li, Yongchang Zhang, Jiale Quan, Guangyu Zhang, Dekai Zhou, Longqiu Li","doi":"10.1089/soro.2024.0147","DOIUrl":"https://doi.org/10.1089/soro.2024.0147","url":null,"abstract":"<p><p>The tip-growing robot, constructed from flexible film or nylon and powered by fluid pressure, has exhibited superior motion performance and high adaptability in complex and restricted environments for detection and manipulation. However, the insufficient stiffness caused by its flexibility limits its ability to carry heavy loads in long and complex three-dimensional spaces. To address this, the study proposed a novel layer jamming mechanism inspired by the subcutaneous scales of freshwater eels. The discrete and continuous flaps, integrated and jammed between the designed double-layered body, increase the global stiffness without impairing tip eversion and steering capabilities. The internal pressure driving the eversion replaces the conventional vacuum system to provide the compression force, reducing lag and complexity. Additionally, the tip interspace between the two body layers ensures steering flexibility of the hardening robot and realizes shape locking post-deformation. The test shows that this mechanism increases the bending stiffness, torsional stiffness, and joint stiffness of the robot by 4.6, 7.8, and 8.7 times, respectively. Further, we demonstrate and verify the long-distance movement and superior carrying abilities in three-dimensional spaces, confirming that the tip-growing soft robot with jamming layers has broader application potential.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144228150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-06-01Epub Date: 2024-12-24DOI: 10.1089/soro.2024.0098
Piotr Bartkowski, Łukasz Pawliszak, Agata Lusawa, Sabina Sypniewska, Marta Ciemiorek, Yong-Lae Park
{"title":"Flexible Electrical Energy Storage Structure with Variable Stiffness for Soft Robotics and Wearable Electronics.","authors":"Piotr Bartkowski, Łukasz Pawliszak, Agata Lusawa, Sabina Sypniewska, Marta Ciemiorek, Yong-Lae Park","doi":"10.1089/soro.2024.0098","DOIUrl":"10.1089/soro.2024.0098","url":null,"abstract":"<p><p>Based on the analysis of the structures of robots and electronics developed so far, it should be noted that a majority of them need a reservoir for electrical energy storage. Unfortunately, most off-the-shelf devices commercially available nowadays are based on rigid parts that heavily limit the possibilities of incorporating such products into soft robots and wearable electronics. To address these issues, a new type of flexible structure for electrical energy storage, which consists of small battery cells connected by liquid metal paths, was proposed. It can achieve a low value of Young's modulus (about 0.13 MPa) while maintaining electrochemical stability for large stretches (max. capacity reduction-2%). We proposed an individual layer structure as well as a sandwich structure with a granular core, which by way of granular jamming phenomena can change the stiffness (almost 300%). This article describes the concept and working principle of the proposed flexible electrical energy storage structure, followed by the mechanical and electrical characterization, electrochemical impedance spectroscopy, and galvanostatic battery cell cycling. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize the electrodes. The article also includes numerical simulations and potential applications of the studied structure.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"315-326"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-06-01Epub Date: 2024-12-02DOI: 10.1089/soro.2024.0037
Xuyang Ren, Tianle Pan, Paolo Dario, Shuxin Wang, Philip Wai Yan Chiu, Gastone Ciuti, Zheng Li
{"title":"Design and Analytical Modeling of a Dumbbell-Shaped Balloon Anchoring Actuator for Safe and Efficient Locomotion Inside Gastrointestinal Tract.","authors":"Xuyang Ren, Tianle Pan, Paolo Dario, Shuxin Wang, Philip Wai Yan Chiu, Gastone Ciuti, Zheng Li","doi":"10.1089/soro.2024.0037","DOIUrl":"10.1089/soro.2024.0037","url":null,"abstract":"<p><p>Colorectal cancer stands as one of the most prevalent cancers globally, representing 9.8% of total cases and contributing to 9.2% of mortalities annually. Robotic \"front-wheel\" navigating colonoscopes mitigate aggressive stretching against the long and tortuous colonic wall, alleviating associated discomfort and pain typically experienced by patients inspected by conventional \"back-wheel\" navigating colonoscopes. The anchoring unit of most \"front-wheel\" navigating colonoscopes plays a crucial role in ensuring effective locomotion by preventing slipping during elongation/contraction of the central actuation part. The soft balloon anchoring actuator emerges as a promising solution due to its high compliance. This study introduces a dumbbell-shaped balloon anchoring actuator (DBAA) integrating an \"inflation and suction\" mechanism to address the inherent conflict between achieving sufficient anchoring force and minimizing expansion and potential trauma of the colonic wall, commonly encountered in current balloon anchoring actuators. Analytical modeling of DBAA and soft external lumen, encompassing geometric deformation and anchoring force, were proposed to characterize the actuator and provide guidelines for designing and controlling DBAA in further applications, enabling autonomous anchoring within different diameter lumens and achieving the expected anchoring force. A comprehensive set of validation experiments was conducted, and the outcomes revealed high consistency with analytical predictions, confirming the effectiveness of the proposed analytical modeling approach. Furthermore, the results demonstrated a significant enhancement in anchoring force with the proposed actuator and corresponding mechanism while concurrently maintaining low-lumen expansion. For instance, in a lumen sample with <math><msub><mrow><mtext>R</mtext><mtext> </mtext></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><mo>=</mo><mn>15</mn><mi>m</mi><mi>m</mi><mo>,</mo><mi> </mi><msub><mrow><mtext>Λ</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>105</mn><mi>%</mi><mo>,</mo></math> the anchoring force reaches 14.5 N with 50 kPa negative pressure, which is 12.4 times of the force (1.17 N) observed without applying negative pressure.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"374-385"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic Design Framework of Dielectric Elastomer Actuators: Neural Network-Based Real-Time Simulation, Genetic Algorithm-Based Electrode Optimization, and Experimental Verification.","authors":"Zijian Qin, Jieji Ren, Feifei Chen, Jiang Zou, Guoying Gu","doi":"10.1089/soro.2024.0063","DOIUrl":"10.1089/soro.2024.0063","url":null,"abstract":"<p><p>Dielectric elastomer actuators (DEAs) enable to create soft robots with fast response speed and high-energy density, but the fast optimization design of DEAs still remains elusive because of their continuous electromechanical deformation and high-dimensional design space. Existing approaches usually involve repeating and vast finite element calculation during the optimization process, leading to low efficiency and time consuming. The advance of deep learning has shown the potential to accelerate the optimization process, but the high-dimensional design space leads to challenge on the accuracy and generality of the deep learning model. In this work, we propose a deep learning-based automatic design framework for DEAs, capable of rapidly generating high-dimensional distributed electrode patterns based on different design objects. This framework is developed as follows: (1) a dataset construction strategy combining with a finite element model is developed to optimize the data distribution within the high-dimensional design space; (2) a neural network-embedded physical information is designed and trained to achieve accurate prediction of the continuous deformation within <math><mrow><mn>0.011</mn><mi>s</mi></mrow></math>; and (3) a genetic algorithm with the neural network is proposed to automatically and rapidly optimize the electrode pattern of DEAs based on various design objects. To verify the effectiveness, a series of case studies (including maximum displacement, specific displacement, multiplicity of solutions, multiple degree-of-freedom actuations, and complex actuations) has been conducted. Both simulation results and experimental data demonstrate that our design framework can automatically design the electrode pattern within 2 min and obviously improve the performance of DEAs. This work proposes a deep learning-based design approach with automatic and rapid property, thereby paving the way for broader applications of DEAs.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"337-349"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-06-01Epub Date: 2024-11-27DOI: 10.1089/soro.2024.0014
Yuhao Xu, Dezhi Song, Ketao Zhang, Chaoyang Shi
{"title":"Development of a Variable-Pitch Flexible-Screw-Driven Continuum Robot (FSDCR) with Motion Decoupling Capability.","authors":"Yuhao Xu, Dezhi Song, Ketao Zhang, Chaoyang Shi","doi":"10.1089/soro.2024.0014","DOIUrl":"10.1089/soro.2024.0014","url":null,"abstract":"<p><p>Tendon-driven continuum robots suffer from crosstalk of driving forces between sections, typically resulting in motion coupling between sections, which affects their motion accuracy and complicates the control strategies. To address these issues, this article proposes a mechanically designed variable-pitch flexible-screw-driven continuum robot (FSDCR) that enables motion decoupling between sections. The continuum section of the FSDCR comprises a series of orthogonally arranged vertebrae and is driven by customized variable-pitch flexible screws. The variable-pitch flexible screws apply driving forces and constraints to several threaded vertebrae in the continuum section, improving positioning accuracy and loading capacity. The flexible screws effectively balance the driving force and torque within one section through antagonistic torsional actuation, thereby achieving motion decoupling between sections. Characterization experiments have been conducted to compare the motion accuracy and load capacity of the variable-pitch FSDCR with those of the constant-pitch FSDCR. The results demonstrate that the variable-pitch FSDCR exhibits improved positioning accuracy, minimizing an average error of 0.79 mm (0.60% relative to its total length), which is 82.09% lower than that of the constant-pitch FSDCR. The load capacity of the variable-pitch FSDCR is enhanced by up to 129.09% compared with the constant-pitch FSDCR. Experiments on the motion decoupling performance of the FSDCR show that the maximum motion coupling error is 0.32 mm (0.24% relative to the section length). Additionally, the motion coupling error is minimally influenced by the rotational speed of the screw. Finally, a three-section FSDCR is constructed, and its load capacity and motion flexibility are demonstrated.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"350-363"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-06-01Epub Date: 2024-12-18DOI: 10.1089/soro.2024.0019
Fan Wang, Wenhao Shen, Yujiao Wu, Jie Xu, Qinchuan Li, Sukho Park
{"title":"Ultralow Voltage High-Performance Nanocellulose-Based Electro-Ionic Actuators for Soft Robots.","authors":"Fan Wang, Wenhao Shen, Yujiao Wu, Jie Xu, Qinchuan Li, Sukho Park","doi":"10.1089/soro.2024.0019","DOIUrl":"10.1089/soro.2024.0019","url":null,"abstract":"<p><p>High-performance eco-friendly soft actuators showing large displacement, fast response, and long-term operational capability require further development for next-generation bioinspired soft robots. Herein, we report an electro-ionic soft actuator based on carboxylated cellulose nanocrystals (CCNC) and carboxylated cellulose nanofibers (CCNF), graphene nanoplatelets (GN), and ionic liquid (IL). The actuator exhibited exceptional actuation performances, achieving large displacements ranging from 1.6 to 12.3 mm under ultralow actuation voltages of 0.25-1.5 V. It also operated stably across a broad frequency band from 0.1 to 10 Hz and displayed a significant working stability of 99.3% after up to 240 cycles. Remarkably, the electro-active actuator demonstrated a fast response (0.39 s delay under 1.0 V at 0.1 Hz), and a long lifespan (with only a minor decrease of 2% for 2 years). The enhanced actuation performances of the actuator were attributed to its superior ionic conductivity, high charge storage ability, strong ionic interaction, and physical-chemical cross-linked networks. Furthermore, we successfully demonstrated the bioinspired applications of CCNC/CCNF-IL-GN actuators including micro-grippers, spiral-structure electroactive stents, biomimetic fingers, and bionic dragonfly wings. The proposed actuator and its bioinspired robot designs could offer a significant way for the development of next-generation eco-friendly soft actuators, soft robots, and biomedical microdevices in microenvironments requiring low-voltage environment.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"327-336"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft roboticsPub Date : 2025-06-01Epub Date: 2024-12-30DOI: 10.1089/soro.2024.0034
Natalie Tanczak, Aaron Yurkewich, Francesco Missiroli, Seng Kwee Wee, Simone Kager, Hyungmin Choi, Kyu-Jin Cho, Hong Kai Yap, Cristina Piazza, Lorenzo Masia, Olivier Lambercy
{"title":"Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.","authors":"Natalie Tanczak, Aaron Yurkewich, Francesco Missiroli, Seng Kwee Wee, Simone Kager, Hyungmin Choi, Kyu-Jin Cho, Hong Kai Yap, Cristina Piazza, Lorenzo Masia, Olivier Lambercy","doi":"10.1089/soro.2024.0034","DOIUrl":"10.1089/soro.2024.0034","url":null,"abstract":"<p><p>Soft robotics is gaining interest in rehabilitation applications, bringing new opportunities to offset the loss of upper limb motor function following neurological, neuromuscular, or traumatic injuries. Unlike conventional rigid robotics, the added softness in linkages or joints promises to make rehabilitation robots compliant, which translates into higher levels of safety, comfort, usability, and portability, opening the door for these rehabilitation technologies to be used in daily life. While several reviews documented the different technical implementations of soft rehabilitation robots, it is essential to discuss the growing clinical evidence on the feasibility and effectiveness of using this technology for rehabilitative and assistive purposes, whether softness brings the expected advantages from the perspective of end users, and how we should proceed in the future of this field. In this perspective article, we present recent clinical evidence on how 13 different upper limb devices were used in both controlled (clinical) and uncontrolled (at home) settings in more than 37 clinical studies. From these findings and our own experience, we derive recommendations for future developers and end users regarding the design, application, and evaluation of soft robotics for upper limb rehabilitation and assistance.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"303-314"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}