NAR cancer最新文献

筛选
英文 中文
Integrative genome-wide analysis reveals EIF3A as a key downstream regulator of translational repressor protein Musashi 2 (MSI2) 全基因组综合分析显示EIF3A是翻译抑制蛋白Musashi 2(MSI2)的关键下游调节因子
NAR cancer Pub Date : 2021-02-07 DOI: 10.1093/narcan/zcac015
Shilpita Karmakar, Oscar Ramirez, Kiran V. Paul, A. Gupta, Valentina Botti, Igor Ruiz de los Mozos, Nils Neuenkirchen, R. J. Ross, K. Neugebauer, Manoj M. Pillai
{"title":"Integrative genome-wide analysis reveals EIF3A as a key downstream regulator of translational repressor protein Musashi 2 (MSI2)","authors":"Shilpita Karmakar, Oscar Ramirez, Kiran V. Paul, A. Gupta, Valentina Botti, Igor Ruiz de los Mozos, Nils Neuenkirchen, R. J. Ross, K. Neugebauer, Manoj M. Pillai","doi":"10.1093/narcan/zcac015","DOIUrl":"https://doi.org/10.1093/narcan/zcac015","url":null,"abstract":"Musashi 2 (MSI2) is an RNA binding protein (RBP) that regulates asymmetric cell division and cell fate decisions in normal and cancer stem cells. MSI2 appears to repress translation by binding to 3’ untranslated regions (3’UTRs) of mRNA, but the identity of functional targets remains unknown. Here we used iCLIP to identify direct RNA binding partners of MSI2 and integrated these data with polysome profiling to obtain insights into MSI2 function. iCLIP revealed specific MSI2 binding to thousands of target mRNAs largely in 3’UTRs, but translational differences were restricted to a small fraction of these transcripts, indicating that MSI2 regulation is not triggered by simple binding. Instead, the functional targets identified here were bound at higher density and contain more “U/TAG” motifs compared to targets bound non-productively. To further distinguish direct and indirect targets, MSI2 was acutely depleted. Surprisingly, only 50 transcripts were found to undergo translational induction on acute MSI2 loss. Eukaryotic elongation factor 3A (EIF3A) was determined to be an immediate, direct target. We propose that MSI2 down-regulation of EIF3A amplifies these effects on the proteome. Our results also underscore the challenges in defining functional targets of RBP since mere binding does not imply a discernible functional interaction.","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47690977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Androgen signaling connects short isoform production to breakpoint formation at Ewing sarcoma breakpoint region 1 雄激素信号传导将尤因肉瘤断点区1的短亚型产生与断点形成联系起来
NAR cancer Pub Date : 2020-03-26 DOI: 10.1101/2020.03.25.008391
T. R. Nicholas, Peter C. Hollenhorst
{"title":"Androgen signaling connects short isoform production to breakpoint formation at Ewing sarcoma breakpoint region 1","authors":"T. R. Nicholas, Peter C. Hollenhorst","doi":"10.1101/2020.03.25.008391","DOIUrl":"https://doi.org/10.1101/2020.03.25.008391","url":null,"abstract":"Ewing sarcoma breakpoint region 1 (EWSR1) encodes a multifunctional protein that can cooperate with the transcription factor ERG to promote prostate cancer. The EWSR1 gene is also commonly involved in oncogenic gene rearrangements in Ewing sarcoma. Despite the cancer relevance of EWSR1, its regulation is poorly understood. Here we find that in prostate cancer, androgen signaling upregulates a 5’ EWSR1 isoform by promoting usage of an intronic polyadenylation site. This isoform encodes a cytoplasmic protein that can strongly promote cell migration and clonogenic growth. Deletion of an Androgen Receptor (AR) binding site near the 5’ EWSR1 polyadenylation site abolished androgen-dependent upregulation. This polyadenylation site is also near the Ewing sarcoma breakpoint hotspot, and androgen signaling promoted R-loop and breakpoint formation. RNase H overexpression reduced breakage and 5’ EWSR1 isoform expression suggesting an R-loop dependent mechanism. These data suggest that androgen signaling can promote R-loops internal to the EWSR1 gene leading to early transcription termination and breakpoint formation.","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42845089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信