Journal of hazardous materials最新文献

筛选
英文 中文
Deciphering the spatial organization of fibrotic microenvironment in silica particles-induced pulmonary fibrosis. 解密二氧化硅颗粒诱导的肺纤维化中纤维化微环境的空间组织。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135540
Liliang Yang, Xinyan Wei, Piaopiao Sun, Jing Wang, Xinbei Zhou, Xinxin Zhang, Wei Luo, Yun Zhou, Wei Zhang, Shencun Fang, Jie Chao
{"title":"Deciphering the spatial organization of fibrotic microenvironment in silica particles-induced pulmonary fibrosis.","authors":"Liliang Yang, Xinyan Wei, Piaopiao Sun, Jing Wang, Xinbei Zhou, Xinxin Zhang, Wei Luo, Yun Zhou, Wei Zhang, Shencun Fang, Jie Chao","doi":"10.1016/j.jhazmat.2024.135540","DOIUrl":"10.1016/j.jhazmat.2024.135540","url":null,"abstract":"<p><p>Silicosis represents a form of interstitial lung disease induced by the inhalation of silica particles in production environments. A key pathological characteristic of silica-induced pulmonary fibrosis is its localized tissue heterogeneity, which presents significant challenges in analyzing transcriptomic data due to the loss of important spatial context. To address this, we integrate spatial gene expression data with single-cell analyses and achieve a detailed mapping of cell types within and surrounding fibrotic regions, revealing significant shifts in cell populations in normal and diseased states. Additionally, we explore cell interactions within fibrotic zones using ligand-receptor mapping, deepening our understanding of cellular dynamics in these areas. We identify a subset of fibroblasts, termed Inmt fibroblasts, that play a suppressive role in the fibrotic microenvironment. Validating our findings through a comprehensive suite of bioinformatics, histological, and cell culture studies highlights the role of monocyte-derived macrophages in shifting Inmt fibroblast populations into profibrotic Grem1 fibroblast, potentially disrupting lung homeostasis in response to external challenges. Hence, the spatially detailed deconvolution offered by our research markedly advances the comprehension of cell dynamics and environmental interactions pivotal in the development of pulmonary fibrosis.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135540"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric reactive nitrogen conversion kicks off the co-directional and contra-directional effects on PM2.5-O3 pollution. 大气中活性氮的转化引发了对 PM2.5-O3 污染的同向和反向效应。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-16 DOI: 10.1016/j.jhazmat.2024.135558
Feng Wang, Chun Zhang, Yi Ge, Ruiling Zhang, Bijie Huang, Guoliang Shi, Xiaoli Wang, Yinchang Feng
{"title":"Atmospheric reactive nitrogen conversion kicks off the co-directional and contra-directional effects on PM<sub>2.5</sub>-O<sub>3</sub> pollution.","authors":"Feng Wang, Chun Zhang, Yi Ge, Ruiling Zhang, Bijie Huang, Guoliang Shi, Xiaoli Wang, Yinchang Feng","doi":"10.1016/j.jhazmat.2024.135558","DOIUrl":"10.1016/j.jhazmat.2024.135558","url":null,"abstract":"<p><p>As the two important ambient air pollutants, particulate matter (PM<sub>2.5</sub>) and ozone (O<sub>3</sub>) can both originate from gas nitrogen oxides. In this study, applied by theoretical analysis and machine learning method, we examined the effects of atmospheric reactive nitrogen on PM<sub>2.5</sub>-O<sub>3</sub> pollution, in which nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), gaseous nitric acid (HNO<sub>3</sub>) and particle nitrate (pNO<sub>3</sub><sup>-</sup>) conversion process has the co-directional and contra-directional effects on PM<sub>2.5</sub>-O<sub>3</sub> pollution. Of which, HNO<sub>3</sub> and SO<sub>2</sub> are the co-directional driving factors resulting in PM<sub>2.5</sub> and O<sub>3</sub> growing or decreasing simultaneously; while NO, NO<sub>2</sub>, and temperature represent the contra-directional factors, which can promote the growth of one pollutant and reduce another one. Our findings suggest that designing the suitable co-controlling strategies for PM<sub>2.5</sub>-O<sub>3</sub> sustainable reduction should target at driving factors by considering the contra-directional and co-directional effects under suitable sensitivity regions. For co-directional driving factors, the design of suitable mitigation strategies will jointly achieve effective reduction in PM<sub>2.5</sub> and O<sub>3</sub>; while for contra-directional driving factors, it should be more patient, otherwise, it is possible to reduce one item but increase another one at the same time.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135558"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal synthesized kaolin group lamellar/spongy aluminosilicates for enhanced lead vapor capture. 用于增强铅蒸气捕获的水热法合成高岭土类片状/海绵状铝硅酸盐。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-13 DOI: 10.1016/j.jhazmat.2024.135509
Tengfei He, Zifeng Luo, Baosheng Jin
{"title":"Hydrothermal synthesized kaolin group lamellar/spongy aluminosilicates for enhanced lead vapor capture.","authors":"Tengfei He, Zifeng Luo, Baosheng Jin","doi":"10.1016/j.jhazmat.2024.135509","DOIUrl":"10.1016/j.jhazmat.2024.135509","url":null,"abstract":"<p><p>Developing high-temperature-resistant adsorbents with superior porous properties is crucial for safely disposing of heavy metal-containing solid waste via pyrolysis. We synthesized aluminosilicates hydrothermally and observed that acidic conditions, especially HCl (pH=2.6), favored sponge-like mineral (NC2.6) formation with a specific surface area of 500.31 m²/g and pore volume of 0.986 cm³ /g, while alkaline conditions (pH=12.0) promoted spherical particle growth. NC2.6 exhibited higher adsorption capacity compared to kaolinite and halloysite in the PbCl<sub>2</sub> vapor adsorption, reaching a maximum of 137.68 mg/g at 700 ℃ (75.91 % stable). We examined the effect of CO<sub>2</sub> and H<sub>2</sub>O on adsorption efficiency and explored the mechanisms using DFT and GCMC simulations. From GCMC results, CO<sub>2</sub> negatively impacted PbCl<sub>2</sub> adsorption due to competitive adsorption, while H<sub>2</sub>O increased adsorption content (144.24 mg/g at 700 ℃) by converting PbCl<sub>2</sub> into oxides. DFT revealed the presence of CO<sub>2</sub> enhanced the adsorption stability of PbCl<sub>2</sub> via the formation of covalent bonds between O in CO<sub>2</sub> and Pb, and active O on the aluminosilicate surface. H<sub>2</sub>O increased PbCl<sub>2</sub> adsorption energy, as O in H<sub>2</sub>O occupied an active Al that originally formed a covalent bond with Cl, while the H formed a weak hydrogen bond with this Cl.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135509"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study. 水边植物的分解在很大程度上影响着应急处理后水沙系统中沉积锑的转化和迁移:一项微观世界研究。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135598
Jining Li, Mengdi Liu, Lizhi Tong, Yiwen Zhou, Linghao Kong
{"title":"Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study.","authors":"Jining Li, Mengdi Liu, Lizhi Tong, Yiwen Zhou, Linghao Kong","doi":"10.1016/j.jhazmat.2024.135598","DOIUrl":"10.1016/j.jhazmat.2024.135598","url":null,"abstract":"<p><p>Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)<sub>3</sub> hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)<sub>3</sub> dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135598"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The regulatory role of miR-21 in ferroptosis by targeting FTH1 and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis. miR-21通过靶向FTH1在高铁血症中的调控作用,以及外泌体中小胶质细胞衍生的miR-21对砷诱导的神经元高铁血症的贡献。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135580
Huanhuan Wang, Xudan Liu, Yao Chen, Wanying Li, Yanhong Ge, Huning Liang, Bin Xu, Xin Li
{"title":"The regulatory role of miR-21 in ferroptosis by targeting FTH1 and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.","authors":"Huanhuan Wang, Xudan Liu, Yao Chen, Wanying Li, Yanhong Ge, Huning Liang, Bin Xu, Xin Li","doi":"10.1016/j.jhazmat.2024.135580","DOIUrl":"10.1016/j.jhazmat.2024.135580","url":null,"abstract":"<p><p>Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135580"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure. 硫的可用性和结瘤改变了刺槐对铅(Pb)暴露的反应。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135612
Caixin Xue, Rui Liu, Zhuyuan Xia, Jin Jia, Bin Hu, Heinz Rennenberg
{"title":"Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure.","authors":"Caixin Xue, Rui Liu, Zhuyuan Xia, Jin Jia, Bin Hu, Heinz Rennenberg","doi":"10.1016/j.jhazmat.2024.135612","DOIUrl":"10.1016/j.jhazmat.2024.135612","url":null,"abstract":"<p><p>Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135612"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on a harmless treatment method for oily sludge in coal chemical wastewater and the pollutant transformation mechanism of oily sludge during the treatment process. 煤化工废水中含油污泥无害化处理方法及处理过程中含油污泥污染物转化机理研究。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135568
Qian Ge, Yongjun Liu, Pan Liu, Zhuangzhuang Yang, Lu Yang, Zhe Liu, Zhihua Li
{"title":"Research on a harmless treatment method for oily sludge in coal chemical wastewater and the pollutant transformation mechanism of oily sludge during the treatment process.","authors":"Qian Ge, Yongjun Liu, Pan Liu, Zhuangzhuang Yang, Lu Yang, Zhe Liu, Zhihua Li","doi":"10.1016/j.jhazmat.2024.135568","DOIUrl":"10.1016/j.jhazmat.2024.135568","url":null,"abstract":"<p><p>This study developed an ultrasound synergistic subcritical hydrothermal treatment method (U-SHT) to address the challenges posed by the high oil and water content, complex composition, and hazardous nature of oily sludge (OS) generated during the pretreatment of coal chemical wastewater. The study investigated the efficiency of this method for the harmless disposal and resource recovery of OS, and the migration-transformation mechanism of hazardous organic pollutants in OS. The findings revealed that U-SHT achieved a removal efficiency of chemical oxygen demand in OS of 91.16 %, an oil resource recovery efficiency of 96.60 %, and a residual oil rate of 0.28 %, meeting API emission standards. Further research indicated that the solubilizing effect of the surfactant on the oil enhanced the demulsifying effect of ultrasonic cavitation on the emulsified structure of OS, enabling ultrasound to efficiently release and disperse pollutants within OS. This promoted the decomposition and transformation of pollutants under subcritical hydrothermal conditions, with synergistic removal efficiencies for typical pollutants such as long-chain alkanes, polycyclic aromatic hydrocarbons, and phenols reaching 96.61 %, 97.63 %, and 97.76 %, respectively. Economic evaluation indicated that the cost of OS treatment was $29.66/m<sup>3</sup>, significantly lower than existing methods, demonstrating promising practical application prospects.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135568"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of fine particle removal through flue gas cooling in a spray tower with packing materials. 通过使用填料对喷淋塔中的烟气进行冷却,提高细颗粒的去除率。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-08 DOI: 10.1016/j.jhazmat.2024.135390
Sheng Chen, Xuan Zhao, Zuhang Xiao, Mingkai Cheng, Renjie Zou, Guangqian Luo
{"title":"Enhancement of fine particle removal through flue gas cooling in a spray tower with packing materials.","authors":"Sheng Chen, Xuan Zhao, Zuhang Xiao, Mingkai Cheng, Renjie Zou, Guangqian Luo","doi":"10.1016/j.jhazmat.2024.135390","DOIUrl":"10.1016/j.jhazmat.2024.135390","url":null,"abstract":"<p><p>The efficient removal of fine particles from coal-fired flue gas poses challenges for conventional electrostatic precipitators and bag filters. Recently, a novel approach incorporating deep cooling of the flue gas has been proposed to enhance the removal of gaseous pollutants and particles. However, the achievable efficiency and underlying mechanisms of particle capture within the gas cooling system remain poorly understood. This study aims to elucidate the effectiveness of gas cooling in enhancing the removal of particles through a laboratory-scale spray tower equipped with packing materials. The results demonstrate a significant increase in particle removal efficiency, from 63.4 % to over 98 %, as the temperature of the spray liquid decreases from 20℃ to -20℃. Notably, this enhancement is particularly pronounced for particles sized 0.1-1 µm, with efficiency rising from approximately 40 % to 95 %, effectively eliminating the penetration window. Moreover, we find that the spray flow rate positively influences particle removal capability, while the height of the packing section exhibits an optimal value. Beyond this optimal height, particle removal performance may decline due to an inadequate liquid-to-packing ratio. To provide insight into the capture process, we introduce a single-droplet model demonstrating that particle capture is primarily enhanced through the augmented thermophoretic force.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135390"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-inspired Cu2O cathode for O2 capturing and oxidation boosting in electro-Fenton for sulfathiazole decay. 受生物启发的 Cu2O 阴极可在电-芬顿中捕获 O2 并促进氧化,用于磺胺噻唑衰变。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-10 DOI: 10.1016/j.jhazmat.2024.135484
Minghui Liu, Neng Li, Shiyu Meng, Shilin Yang, Baojian Jing, Jiayu Zhang, Jizhou Jiang, Shan Qiu, Fengxia Deng
{"title":"Bio-inspired Cu<sub>2</sub>O cathode for O<sub>2</sub> capturing and oxidation boosting in electro-Fenton for sulfathiazole decay.","authors":"Minghui Liu, Neng Li, Shiyu Meng, Shilin Yang, Baojian Jing, Jiayu Zhang, Jizhou Jiang, Shan Qiu, Fengxia Deng","doi":"10.1016/j.jhazmat.2024.135484","DOIUrl":"10.1016/j.jhazmat.2024.135484","url":null,"abstract":"<p><p>A hydrophobic Cu<sub>2</sub>O cathode (Cu<sub>x</sub>O-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)<sub>2</sub> nanorods by oxidizing copper foam (Cu-F) with (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized Cu<sub>x</sub>O-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O<sub>2</sub>-capturing ability of Cu<sub>x</sub>O-L cathode, which led to high H<sub>2</sub>O<sub>2</sub> production due to a 2 nm thick hydrophobic gas layer facilitated O<sub>2</sub>-capturing; (Ⅱ) a relative high concentration of Cu<sup>+</sup> at the Cu<sub>x</sub>O-L cathode promoted the activation of H<sub>2</sub>O<sub>2</sub> into·OH. In addition, the performance of EF with the Cu<sub>x</sub>O-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O<sub>2</sub>-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135484"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effectivity and applicability of a novel sugar-based anionic and nonionic Gemini surfactant synthetized for the perchloroethylene-contaminated groundwater remediation. 合成的一种新型糖基阴离子和非离子 Gemini 表面活性剂对全氯乙烯污染地下水修复的有效性和适用性。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-08 DOI: 10.1016/j.jhazmat.2024.135458
Yu Yao, Yufeng Fu, Chengwu Zhang, Hui Zhang, Chuanyu Qin
{"title":"The effectivity and applicability of a novel sugar-based anionic and nonionic Gemini surfactant synthetized for the perchloroethylene-contaminated groundwater remediation.","authors":"Yu Yao, Yufeng Fu, Chengwu Zhang, Hui Zhang, Chuanyu Qin","doi":"10.1016/j.jhazmat.2024.135458","DOIUrl":"10.1016/j.jhazmat.2024.135458","url":null,"abstract":"<p><p>Surfactant-enhanced aquifer remediation (SEAR) has effectively removed dense nonaqueous phase liquids (DNAPLs) from the contaminated aquifers. However, restricted by structural defects, typical monomeric surfactants undergo precipitation, high adsorption loss, and poor solubilization in aquifers, resulting in low remediation efficiency. In this study, a novel sugar-based anionic and non-ionic Gemini surfactant (SANG) was designed and synthesized for SEAR. Glucose was introduced into SANG as a non-ionic group to overcome the interference of low temperature and ions in groundwater. Sodium sulfonate was introduced as an anionic group to overcome aquifer adsorption loss. Two long-straight carbon chains were introduced as hydrophobic groups to provide high surface activity and solubilizing capacity. Even with low temperature or high salt content, its solution did not precipitate in aquifer conditions. The adsorption loss was as low as 0.54 and 0.90 mg/g in medium and fine sand, respectively. Compared with typical surfactants used for SEAR, SANG had the highest solubilization and desorption abilities for perchloroethylene (PCE) without emulsification, a crucial negative that Tween80 and other non-ionic surfactants exhibit. After flushing the contaminated aquifer using SANG, > 99 % of PCE was removed. Thus, with low potential environmental risk, SANG is effectively applicable in subsurface remediation, making it a better surfactant choice for SEAR.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135458"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信