Journal of dental research最新文献

筛选
英文 中文
Terahertz Imaging Detects Oral Cariogenic Microbial Domains Characteristics. 太赫兹成像检测口腔致龋微生物域特征。
Journal of dental research Pub Date : 2024-12-01 Epub Date: 2024-11-21 DOI: 10.1177/00220345241287733
A Zhang, L Lei, L Cheng, H Yin, C Zhang, J Luo, F Wu, M Hu, R Cheng, T Hu
{"title":"Terahertz Imaging Detects Oral Cariogenic Microbial Domains Characteristics.","authors":"A Zhang, L Lei, L Cheng, H Yin, C Zhang, J Luo, F Wu, M Hu, R Cheng, T Hu","doi":"10.1177/00220345241287733","DOIUrl":"10.1177/00220345241287733","url":null,"abstract":"<p><p>Dental caries, associated with plaque biofilm, is highly prevalent and significantly burdens public health. <i>Streptococcus mutans</i> is the main cariogenic bacteria that adheres to the tooth surface and forms an abundant extracellular polysaccharide matrix (EPS) as a cariogenic biofilm scaffold. <i>S. mutans</i> RNase III-encoding gene (<i>rnc</i>) and a putative chromosome segregation protein-encoding gene (<i>smc</i>) are potentially associated with EPS production. In addition, complex interactions between <i>S. mutans</i> and other oral microorganisms synergistically or antagonistically affect the cariogenicity. Commensal streptococci suppress the growth of cariogenic pathogens, whereas <i>Candida albicans</i> mediates the formation of cariogenic biofilm through aggregation and dual-species biofilm formation with <i>S. mutans</i>. However, label-free detection of cariogenic microbial interactions with the EPS matrix is still challenging during laboratory investigations. Herein, we hypothesized that the <i>S. mutans rnc-smc</i> operon affects EPS production and aimed to observe streptococci, <i>S. mutans</i>, and <i>S. mutans-C. albicans</i> using terahertz scanning near-field optical microscopy (THz s-SNOM). The light in the 0.1- to 0.3-THz frequency range interacted with the sample through a nano-probe tip by a point-by-point scanning process. Additional noise reduction of the original image was achieved by a dual kernel Gaussian filter. The monospecies of streptococci, <i>S. mutans smc/rnc</i> mutants, and the dual-species of <i>S. mutans-C. albicans</i> were scanned by THz s-SNOM. This technique provided terahertz near-field scanning images of <i>S. mutans smc/rnc</i> mutants, streptococci, and dual-species of <i>S. mutans-C. albicans</i>. Additional analysis of the original images potentially revealed the structures of the strains, such as cell diameters and cell wall thickness. In conclusion, the results suggested that the <i>S. mutans rnc-smc</i> operon regulates EPS production. Furthermore, this novel label-free detection of a THz near-field scanning technique had the potential to observe the morphologies of bacterial cells and EPS matrix.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1428-1436"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodontitis and Diabetes Differentially Affect Inflammation in Obesity. 牙周炎和糖尿病对肥胖症炎症的影响各不相同
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-09 DOI: 10.1177/00220345241280743
S SantaCruz-Calvo, S Saraswat, H Hasturk, D R Dawson, X D Zhang, B S Nikolajczyk
{"title":"Periodontitis and Diabetes Differentially Affect Inflammation in Obesity.","authors":"S SantaCruz-Calvo, S Saraswat, H Hasturk, D R Dawson, X D Zhang, B S Nikolajczyk","doi":"10.1177/00220345241280743","DOIUrl":"10.1177/00220345241280743","url":null,"abstract":"<p><p>Periodontitis (PD) potentiates systemic inflammatory diseases and fuels a feed-forward loop of pathogenic inflammation in obesity and type 2 diabetes (T2D). Published work in this area often conflates obesity with obesity-associated T2D; thus, it remains unclear whether PD similarly affects the inflammatory profiles of these 2 distinct systemic diseases. We collected peripheral blood mononuclear cells (PBMCs) from cross-sectionally recruited subjects to estimate the ability of PD to affect cytokine production in human obesity and/or T2D. We analyzed 2 major sources of systemic inflammation: T cells and myeloid cells. Bioplex quantitated cytokines secreted by PBMCs stimulated with T cell- or myeloid-targeting activators, and we combinatorially analyzed outcomes using partial least squares discriminant analysis. Our data show that PD significantly shifts peripheral T cell- and myeloid-generated inflammation in obesity. PD also changed myeloid- but not T cell-generated inflammation in T2D. T2D changed inflammation in samples from subjects with PD, and PD changed inflammation in samples from subjects with T2D, consistent with the bidirectional relationship of inflammation between these 2 conditions. PBMCs from T2D subjects with stage IV PD produced lower amounts of T cell and myeloid cytokines compared with PBMCs from T2D subjects with stage II to III PD. We conclude that PD and T2D affect systemic inflammation through overlapping but nonidentical mechanisms in obesity, indicating that characterizing both oral and metabolic status (beyond obesity) is critical for identifying mechanisms linking PD to systemic diseases such as obesity and T2D. The finding that stage IV PD cells generate fewer cytokines in T2D provides an explanation for the paradoxical findings that the immune system can appear activated or suppressed in PD, given that many studies do not report PD stage. Finally, our data indicate that a focus on multiple cellular sources of cytokines will be imperative to clinically address the systemic effects of PD in people with obesity.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1313-1322"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial RANKL Limits Experimental Periodontitis via Langerhans Cells. 上皮 RANKL 通过朗格汉斯细胞限制实验性牙周炎的发生
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-06 DOI: 10.1177/00220345241274370
Y Netanely, O Barel, R Naamneh, Y Jaber, S Yacoub, Y Saba, K Zubeidat, O Saar, L Eli-Berchoer, S Yona, A Brand, T Capucha, A Wilensky, K Loser, B E Clausen, A-H Hovav
{"title":"Epithelial RANKL Limits Experimental Periodontitis via Langerhans Cells.","authors":"Y Netanely, O Barel, R Naamneh, Y Jaber, S Yacoub, Y Saba, K Zubeidat, O Saar, L Eli-Berchoer, S Yona, A Brand, T Capucha, A Wilensky, K Loser, B E Clausen, A-H Hovav","doi":"10.1177/00220345241274370","DOIUrl":"10.1177/00220345241274370","url":null,"abstract":"<p><p>Due to its capacity to drive osteoclast differentiation, the receptor activator of nuclear factor kappa-β ligand (RANKL) is believed to exert a pathological influence in periodontitis. However, RANKL was initially identified as an activator of dendritic cells (DCs), expressed by T cells, and exhibits diverse effects on the immune system. Hence, it is probable that RANKL, acting as a bridge between the bone and immune systems, plays a more intricate role in periodontitis. Using ligature-induced periodontitis (LIP), rapid alveolar bone loss was detected that was later halted even though the ligature was still present. This late phase of LIP was also linked with immunosuppressive conditions in the gingiva. Further investigation revealed that the ligature prompted an immediate migration of RANK-expressing Langerhans cells (LCs) and EpCAM<sup>+</sup> DCs, the antigen-presenting cells (APCs) of the gingival epithelium, to the lymph nodes, followed by an expansion of T regulatory (Treg) cells in the gingiva. Subsequently, the ligatured gingiva was repopulated by monocyte-derived RANK-expressing EpCAM<sup>+</sup> DCs, while gingival epithelial cells upregulated RANKL expression. Blocking RANKL signaling with monoclonal antibodies significantly reduced the frequencies of Treg cells in the gingiva and prevented gingival immunosuppression. In addition, RANKL signaling facilitated the differentiation of LCs from bone marrow precursors. To further investigate the role of RANKL, we used K14-RANKL mice, in which RANKL is overexpressed by gingival epithelial cells. The elevated RANKL expression shifted the steady-state frequencies of LCs and EpCAM<sup>+</sup> DCs within the epithelium, favoring LCs over EpCAM<sup>+</sup> DCs. Following ligature placement, heightened levels of Treg cells were observed in the gingiva of K14-RANKL mice, and alveolar bone loss was significantly reduced. These findings suggest that RANKL-RANK interactions between gingival epithelial cells and APCs are crucial for suppressing gingival inflammation, highlighting a protective immunological role for RANKL in periodontitis that was overlooked due to its osteoclastogenic activity.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1281-1290"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surrogate Endpoints: CONSORT and SPIRIT Extensions. 替代终点:CONSORT 和 SPIRIT 扩展。
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-06 DOI: 10.1177/00220345241275479
F Schwendicke, N S Jakubovics
{"title":"Surrogate Endpoints: CONSORT and SPIRIT Extensions.","authors":"F Schwendicke, N S Jakubovics","doi":"10.1177/00220345241275479","DOIUrl":"10.1177/00220345241275479","url":null,"abstract":"","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1163-1164"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear TOP1MT Confers Cisplatin Resistance via Pseudogene in HNSCC. 核 TOP1MT 在 HNSCC 中通过伪基因产生顺铂抗性
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-09 DOI: 10.1177/00220345241272017
T Tong, P S Zhai, X Qin, Z Zhang, C W Li, H Y Guo, H L Ma
{"title":"Nuclear TOP1MT Confers Cisplatin Resistance via Pseudogene in HNSCC.","authors":"T Tong, P S Zhai, X Qin, Z Zhang, C W Li, H Y Guo, H L Ma","doi":"10.1177/00220345241272017","DOIUrl":"10.1177/00220345241272017","url":null,"abstract":"<p><p>Cisplatin resistance is one of the major causes of treatment failure in head and neck squamous cell carcinoma (HNSCC). There is an urgent need to uncover the underlying mechanism for developing effective treatment strategies. A quantitative proteomics assay was used to identify differential proteins in cisplatin-resistant cells. Mitochondrial topoisomerase I (TOP1MT) localization was determined using laser confocal microscopy and nucleocytoplasmic separation assay. Chromatin immunoprecipitation sequencing, dual-luciferase reporter assay, and RNA immunoprecipitation were used to identify the interaction between pseudogenes, miRNAs, and real genes. In vivo experiments verified the interaction between TOP1MT and pseudogenes on cisplatin resistance. TOP1MT was identified as a driving factor of cisplatin resistance in vitro, in vivo, and in HNSCC patients. Moreover, TOP1MT exceptionally translocated to the nucleus in cisplatin-resistant HNSCC cells in a signal peptide-dependent manner. Nuclear TOP1MT (nTOP1MT) transcriptionally regulated the mitochondrial functional pseudogene MTATP6P1, which bound to miR-137 and miR-491-5p as a competing endogenous RNA (ceRNA) and promoted the expression of MTATP6. An increase in MTATP6 enhanced mitochondrial oxidative phosphorylation (OXPHOS), which conferred cisplatin resistance in HNSCC. Our findings revealed that nTOP1MT transcriptionally activated MTAPT6P1 and increased MTATP6 expression via ceRNA, which facilitated OXPHOS and cisplatin resistance. These results provide novel insight for overcoming cisplatin resistance in HNSCC.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1238-1248"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Immunotherapy for Head and Neck Cancer. 头颈癌免疫疗法综述。
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-06 DOI: 10.1177/00220345241271992
J W Goetz, G Rabinowits, N Kalman, A Villa
{"title":"A Review of Immunotherapy for Head and Neck Cancer.","authors":"J W Goetz, G Rabinowits, N Kalman, A Villa","doi":"10.1177/00220345241271992","DOIUrl":"10.1177/00220345241271992","url":null,"abstract":"<p><p>The introduction of immune checkpoint inhibitors (ICIs) to oncological care has transformed the management of various malignancies, including head and neck squamous cell carcinoma (HNSCC), offering improved outcomes. The first-line treatment of recurrent and malignant HNSCC for many years was combined platinum, 5-fluorouracil, and cetuximab. Recently, the ICI pembrolizumab was approved as a first-line treatment, with or without chemotherapy, based on tumor and immune cell percentage of programmed-death ligand 1 (PD-L1). Multiple head and neck (HN) cancer trials have subsequently explored immunotherapies in combination with surgery, chemotherapy, and/or radiation. Immunotherapy regimens may be personalized by tumor biomarker, including PD-L1 content, tumor mutational burden, and microsatellite instability. However, further clinical trials are needed to refine biomarker-driven protocols and standardize pathological methods to guide combined regimen timing, sequencing, and deescalation. Gaps remain for protocols using immunotherapy to reverse oral premalignant lesions, particularly high-risk leukoplakias. A phase II nonrandomized controlled trial, using the ICI nivolumab, showed a 2-y cancer-free survival of 73%, although larger trials are needed. Guidelines are also needed to standardize the role of dental evaluation and care before, during, and after immunotherapy, specifically in regard to oral immune-related adverse events and their impact on cancer recurrence. Standardized diagnostic and oral care coordination strategies to close these gaps are needed to ensure continued success of HN cancer immunotherapy.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1185-1196"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Therapeutic Use of Dental Mesenchymal Stem Cells in Human Clinical Trials. 牙间质干细胞在人类临床试验中的治疗用途。
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-06 DOI: 10.1177/00220345241261900
S Ivanovski, P Han, O A Peters, M Sanz, P M Bartold
{"title":"The Therapeutic Use of Dental Mesenchymal Stem Cells in Human Clinical Trials.","authors":"S Ivanovski, P Han, O A Peters, M Sanz, P M Bartold","doi":"10.1177/00220345241261900","DOIUrl":"10.1177/00220345241261900","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs), characterized by their undifferentiated and multipotent nature, can be derived from various sources, including bone marrow, adipose, and dental tissues. Among these, dental MSCs (DSCs) exhibit universal MSC characteristics and are attracting considerable attention for regenerating oral and craniofacial tissues. This review provides a contemporary overview of recently published clinical studies using DSCs for various orodental and maxillofacial regenerative applications, including bone, periodontal, and endodontic regeneration. It also explores the utilization of DSCs in treating systemic conditions, exemplified by their application in managing conditions such as COVID-19 and osteoarthritis. The available evidence underscores the potential of DSCs and their secretome as efficacious tools in regenerative medicine for both dental and nondental clinical applications, supporting the continued promise of stem cell-based therapies. It is nevertheless evident that there are a number of important challenges that restrict the widespread utilization of DSCs, namely, difficulty in standardizing autologous preparations, insufficient cell surface marker characterization, high production costs, and regulatory compliance requirements. Further, the unique requirements of dental applications, especially complex structures such as the periodontium, where temporospatial control over the healing process is required, necessitate the combination of stem cells with appropriate scaffolds according to the principles of tissue engineering. There is currently insufficient evidence to support the clinical translation of DSCs into clinical practice, and phase 3 clinical trials with standardized protocols for cell sourcing, propagation, dosing, and delivery are required to move the field forward. In summary, this review provides a contemporary overview of the evolving landscape of stem cell therapy, offering insights into the latest developments and trends as well as the challenges that need to be addressed for the widespread application of DSC-based cell therapies.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1173-1184"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetically Supported Drug Targets and Dental Traits: A Mendelian Randomization Study. 基因支持药物靶点与牙齿特征:孟德尔随机化研究。
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-06 DOI: 10.1177/00220345241272045
L Liu, T Wang, C Duan, S Mao, B Wu, Y Chen, D Huang, Y Cao
{"title":"Genetically Supported Drug Targets and Dental Traits: A Mendelian Randomization Study.","authors":"L Liu, T Wang, C Duan, S Mao, B Wu, Y Chen, D Huang, Y Cao","doi":"10.1177/00220345241272045","DOIUrl":"10.1177/00220345241272045","url":null,"abstract":"<p><p>Current interventions for oral/dental diseases heavily rely on operative/surgical procedures, while the discovery of novel drug targets may enable access to noninvasive pharmacotherapy. Therefore, this study aims to leverage large-scale data and Mendelian randomization (MR) techniques, utilizing genetic variants as instruments, to identify potential therapeutic targets for oral and dental diseases supported by genetic evidence. By intersecting 4,302 druggable genes with expression quantitative trait loci from 31,684 blood samples, we identified 2,580 druggable targets as exposures. Single nucleotide polymorphisms associated with dental disease/symptom traits were collected from FinnGen R9, the Gene-Lifestyle Interactions in Dental Endpoints consortium, and the UK Biobank to serve as outcomes for both discovery and replication purposes. Through MR analysis, we identified 43 druggable targets for various dental disease/symptom traits. To evaluate the viability of these targets, we replicated the analysis using circulating protein quantitative trait loci as exposures. Additionally, we conducted sensitivity, colocalization, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes annotation, protein-protein interaction analyses, and validated dental trait-associated druggable gene expression in animal models. Among these targets, <i>IL12RB1</i> (odds ratio [OR], 1.01; 95% confidence interval [CI], 1.01-1.01) and <i>TNF</i> (OR, 0.98; 95% CI, 0.97-0.99) exhibited therapeutic promise for oral ulcers, whereas <i>CXCL10</i> (OR, 0.84; 95% CI, 0.76-0.91) was for periodontitis. Through a rigorous quality control and validation pipeline, our study yields compelling evidence for these druggable targets, which may enhance the clinical prognosis by developing novel drugs or repurposing existing ones.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1271-1280"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia. 预测口腔白斑病上皮发育不良的深度学习系统
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-09 DOI: 10.1177/00220345241272048
J Adeoye, A Chaurasia, A Akinshipo, I K Suleiman, L-W Zheng, A W I Lo, J J Pu, S Bello, F O Oginni, E T Agho, R O Braimah, Y X Su
{"title":"A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia.","authors":"J Adeoye, A Chaurasia, A Akinshipo, I K Suleiman, L-W Zheng, A W I Lo, J J Pu, S Bello, F O Oginni, E T Agho, R O Braimah, Y X Su","doi":"10.1177/00220345241272048","DOIUrl":"10.1177/00220345241272048","url":null,"abstract":"<p><p>Oral leukoplakia (OL) has an inherent disposition to develop oral cancer. OL with epithelial dysplasia (OED) is significantly likely to undergo malignant transformation; however, routine OED assessment is invasive and challenging. This study investigated whether a deep learning (DL) model can predict dysplasia probability among patients with leukoplakia using oral photographs. In addition, we assessed the performance of the DL model in comparison with clinicians' ratings and in providing decision support on dysplasia assessment. Retrospective images of leukoplakia taken before biopsy/histopathology were obtained to construct the DL model (<i>n</i> = 2,073). OED status following histopathology was used as the gold standard for all images. We first developed, fine-tuned, and internally validated a DL architecture with an EfficientNet-B2 backbone that outputs the predicted probability of OED, OED status, and regions-of-interest heat maps. Then, we tested the performance of the DL model on a temporal cohort before geographical validation. We also assessed the model's performance at external validation with opinions provided by human raters on OED status. Performance evaluation included discrimination, calibration, and potential net benefit. The DL model achieved good Brier scores, areas under the curve, and balanced accuracies of 0.124 (0.079-0.169), 0.882 (0.838-0.926), and 81.8% (76.5-87.1) at testing and 0.146 (0.112-0.18), 0.828 (0.792-0.864), and 76.4% (72.3-80.5) at external validation, respectively. In addition, the model had a higher potential net benefit in selecting patients with OL for biopsy/histopathology during OED assessment than when biopsies were performed for all patients. External validation also showed that the DL model had better accuracy than 92.3% (24/26) of human raters in classifying the OED status of leukoplakia from oral images (balanced accuracy: 54.8%-79.7%). Overall, the photograph-based intelligent model can predict OED probability and status in leukoplakia with good calibration and discrimination, which shows potential for decision support to select patients for biopsy/histopathology, obviate unnecessary biopsy, and assist in patient self-monitoring.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1218-1226"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral Health Research in the WHO African Region between 2011 and 2022: A Scoping Review. 2011 至 2022 年世界卫生组织非洲地区口腔健康研究:范围界定审查。
Journal of dental research Pub Date : 2024-11-01 Epub Date: 2024-10-29 DOI: 10.1177/00220345241272024
T F Labarca, D Ortuño, L Neira, G Andrade, F J Bravo, C R Cantarutti, M Dallaserra, A Gatarayiha, J Karajgikar, R J Kulchar, X Liu, C C Martins-Pfeifer, N Olivares, L Pilcher, S Pahlke, C Pirela, J M Sanchez, A Song, O Urquhart, J P Vargas, C Véliz, F Verdugo-Paiva, P Vergara, V Zaffiri, J Zuñiga, Y Makino, M Glick, A Carrasco-Labra
{"title":"Oral Health Research in the WHO African Region between 2011 and 2022: A Scoping Review.","authors":"T F Labarca, D Ortuño, L Neira, G Andrade, F J Bravo, C R Cantarutti, M Dallaserra, A Gatarayiha, J Karajgikar, R J Kulchar, X Liu, C C Martins-Pfeifer, N Olivares, L Pilcher, S Pahlke, C Pirela, J M Sanchez, A Song, O Urquhart, J P Vargas, C Véliz, F Verdugo-Paiva, P Vergara, V Zaffiri, J Zuñiga, Y Makino, M Glick, A Carrasco-Labra","doi":"10.1177/00220345241272024","DOIUrl":"10.1177/00220345241272024","url":null,"abstract":"<p><p>The status of oral health research in the World Health Organization (WHO) African region is unclear, yet the need for such information is central to moving an oral health agenda forward. Such an agenda is essential for effectively translating research into actionable practices and supporting regional strategies. The aim of this scoping review was to provide data on the scope and output of oral health research in the WHO African region to be used as a starting point for establishing a research agenda that can affect oral health in the region. We conducted a systematic search in PubMed; EMBASE; Epistemonikos; Scopus; the International Association for Dental, Oral, and Craniofacial Research General and Regional Sessions; ProQUEST; PROSPERO; and African regional databases such as Regional African Index Medicus and the African Journal Online. We included primary and secondary studies published in English, French, or Portuguese between January 1, 2011, and December 31, 2022, addressing oral health-related research having individuals, groups, or populations as units of analysis. These reports either addressed a topic relevant to the WHO African region assessed using the title and study objective or were conducted in a country in the region. We excluded in vitro and in vivo studies focusing on cells, biomarkers, or animals. We assessed 24,014 records, and 1,379 proved eligible. Our findings indicate a preference for particular research designs less suitable for evidence-informed practice guidelines and oral policies, a limited scope of oral health research topics, and important regional differences in research capacity. Furthermore, publications by researchers in the WHO African region tend to be published in journals with a limited readership. A discussion of our findings among oral health researchers at academic institutions in the WHO African region on how to create within- and across-country collaborations could potentially improve both health and oral health in the region.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1209-1217"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信