H Yuan, G E Chlipala, H I Bangash, R Meenakshi, D Chen, H M Trivedi, L A DiPietro, P Gajendrareddy, L Chen
{"title":"Dynamics of Human Palatal Wound Healing and the Associated Microbiome.","authors":"H Yuan, G E Chlipala, H I Bangash, R Meenakshi, D Chen, H M Trivedi, L A DiPietro, P Gajendrareddy, L Chen","doi":"10.1177/00220345241288761","DOIUrl":"10.1177/00220345241288761","url":null,"abstract":"<p><p>Wound healing in the oral mucosa is superior to that in the skin, with faster wound closure accompanied by reduced inflammation, less angiogenesis, and minimal scar formation. A well-characterized oral wound model is critical to investigating the mechanisms of oral wound closure and the efficacy of various clinical interventions. Currently, there are a few human oral wound models, although none of them are well characterized. In the present study, we describe and characterize a human hard palate wound healing model. A 3.5-mm circular and two 1 × 5-mm rectangular full-thickness wounds were made in the first and second molar region, 5 mm from the gingival margin, on the hard palate of human subjects. The circular wound was used to monitor wound closure and collect swabs for a microbiome analysis via 16s rRNA sequencing. The rectangular wounds were biopsied and the tissue was used to evaluate the gene expression of wound healing-related mediators by real-time polymerase chain reaction. Saliva was also collected to examine the protein levels of similar molecules by enzyme-linked immunosorbent assays. Circular wounds were nearly closed on day 7 after wounding. Significant changes in the gene expression of inflammatory cytokines, growth factors, antimicrobial peptides, and extracellular matrix-related molecules were identified in day 1 and day 3 wound tissue and compared with unwounded tissue on day 0. Changes in the protein levels of various mediators were limited in the saliva. In addition, alpha diversity, beta diversity, and differential microbiome analysis demonstrated significant changes in bacterial colonization of the wound surface over time compared with unwounded mucosa. In summary, we comprehensively characterize a human hard palate wound-healing model that details the dynamic changes of wound closure, levels of wound healing-related mediators in the wound and saliva, and the oral wound microbiome.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"97-105"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N van Nistelrooij, S Schitter, P van Lierop, K El Ghoul, D König, M Hanisch, A Tel, T Xi, D G E Thiem, R Smeets, L Dubois, T Flügge, B van Ginneken, S Bergé, S Vinayahalingam
{"title":"Detecting Mandible Fractures in CBCT Scans Using a 3-Stage Neural Network.","authors":"N van Nistelrooij, S Schitter, P van Lierop, K El Ghoul, D König, M Hanisch, A Tel, T Xi, D G E Thiem, R Smeets, L Dubois, T Flügge, B van Ginneken, S Bergé, S Vinayahalingam","doi":"10.1177/00220345241256618","DOIUrl":"10.1177/00220345241256618","url":null,"abstract":"<p><p>After nasal bone fractures, fractures of the mandible are the most frequently encountered injuries of the facial skeleton. Accurate identification of fracture locations is critical for effectively managing these injuries. To address this need, JawFracNet, an innovative artificial intelligence method, has been developed to enable automated detection of mandibular fractures in cone-beam computed tomography (CBCT) scans. JawFracNet employs a 3-stage neural network model that processes 3-dimensional patches from a CBCT scan. Stage 1 predicts a segmentation mask of the mandible in a patch, which is subsequently used in stage 2 to predict a segmentation of the fractures and in stage 3 to classify whether the patch contains any fracture. The final output of JawFracNet is the fracture segmentation of the entire scan, obtained by aggregating and unifying voxel-level and patch-level predictions. A total of 164 CBCT scans without mandibular fractures and 171 CBCT scans with mandibular fractures were included in this study. Evaluation of JawFracNet demonstrated a precision of 0.978 and a sensitivity of 0.956 in detecting mandibular fractures. The current study proposes the first benchmark for mandibular fracture detection in CBCT scans. Straightforward replication is promoted by publicly sharing the code and providing access to JawFracNet on grand-challenge.org.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1384-1391"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Imaging in Dental Research: From Gene Mapping to AI Global Data.","authors":"D T Graves, S E Uribe","doi":"10.1177/00220345241293040","DOIUrl":"10.1177/00220345241293040","url":null,"abstract":"<p><p>Advances in imaging technologies combined with artificial intelligence (AI) are transforming dental, oral, and craniofacial research. This editorial highlights breakthroughs ranging from gene expression mapping to visualizing the availability of global AI data, providing new insights into biological complexity and clinical applications.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1329-1330"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J Woo, O Kripfgans, I-C Wang, A Samal, A R Betancourt, J C Fenno, H-L Chan
{"title":"Ultrasonographic Evaluation of Vascular Response to Mechanical Compression during Induced Gingival Inflammation.","authors":"J Woo, O Kripfgans, I-C Wang, A Samal, A R Betancourt, J C Fenno, H-L Chan","doi":"10.1177/00220345241286807","DOIUrl":"10.1177/00220345241286807","url":null,"abstract":"<p><p>The aim of this study was to evaluate the gingival vascular response to mechanical compression during inflammation using ultrasonography. Four female and 4 male Sinclair mini pigs 18 mo of age were included in the study. Pathogenic bacteria-impregnated silk ligatures were placed around the third premolars (PM3), fourth premolars (PM4), and first molars (M1). Ligatures were placed per quadrant at 2-wk intervals in random order. Ultrasonographic study was performed at 2-wk intervals following baseline until the 10th week. Brightness mode (B-mode) images and color flow cine loops were captured at 2 different conditions: 1 with only coupling gel between the ultrasound transducer and the mucosal surface and 1 with the transducer compressing the mucosal surface. The compression was visually adjusted until minimal to no blood flow was detected in color-flow mode. Compression was facilitated using a solid gel pad attached to the transducer. Strain values were obtained from B-mode images of the gel pad and plotted versus study weeks. The <i>t</i> test comparisons were obtained to the baseline (week 0). Data from female and male pigs were plotted and analyzed separately for comparison. Gel pad strain increased with peak around week 4 and gradually decreased in both sexes. In male pigs, the increase in strain was statistically significant in weeks 2, 4, and 6 of all teeth regions and week 8 of PM4 and M1 regions. In female pigs, the increase in strain was significant in only week 4 of PM4. Higher strain required for stoppage of blood flow implies increased gingival blood flow with inflammation, which corresponds with previous studies. Considerably smaller changes in gel pad strain were noted from female pigs, indicating a smaller increase in gingival blood flow compared with males. This study demonstrated a possible application of intraoral ultrasonography for assessment of gingival inflammation.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1403-1411"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J Haller, N Abedi, A Hafedi, O Shehab, M S Wietecha
{"title":"Spatial Transcriptomics Unravel the Tissue Complexity of Oral Pathogenesis.","authors":"J Haller, N Abedi, A Hafedi, O Shehab, M S Wietecha","doi":"10.1177/00220345241271934","DOIUrl":"10.1177/00220345241271934","url":null,"abstract":"<p><p>Spatial transcriptomics (ST) is a cutting-edge methodology that enables the simultaneous profiling of global gene expression and spatial information within histological tissue sections. Traditional transcriptomic methods lack the spatial resolution required to sufficiently examine the complex interrelationships between cellular regions in diseased and healthy tissue states. We review the general workflows for ST, from specimen processing to ST data analysis and interpretations of the ST dataset using visualizations and cell deconvolution approaches. We show how recent studies used ST to explore the development or pathogenesis of specific craniofacial regions, including the cranium, palate, salivary glands, tongue, floor of mouth, oropharynx, and periodontium. Analyses of cranial suture patency and palatal fusion during development using ST identified spatial patterns of bone morphogenetic protein in sutures and osteogenic differentiation pathways in the palate, in addition to the discovery of several genes expressed at critical locations during craniofacial development. ST of salivary glands from patients with Sjögren's disease revealed co-localization of autoimmune antigens with ductal cells and a subpopulation of acinar cells that was specifically depleted by the dysregulated autoimmune response. ST of head and neck lesions, such as premalignant leukoplakia progressing to established oral squamous cell carcinomas, oral cancers with perineural invasions, and oropharyngeal lesions associated with HPV infection spatially profiled the complex tumor microenvironment, showing functionally important gene signatures of tumor cell differentiation, invasion, and nontumor cell dysregulation within patient biopsies. ST also enabled the localization of periodontal disease-associated gene expression signatures within gingival tissues, including genes involved in inflammation, and the discovery of a fibroblast subtype mediating the transition between innate and adaptive immune responses in periodontitis. The increased use of ST, especially in conjunction with single-cell analyses, promises to improve our understandings of craniofacial development and pathogenesis at unprecedented tissue-level resolution in both space and time.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1331-1339"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J O Piña, R Raju, D M Roth, E W Winchester, C Padilla, J Iben, F R Faucz, J L Cotney, R N D'Souza
{"title":"Spatial Multi-omics Reveals the Role of the Wnt Modulator, Dkk2, in Palatogenesis'.","authors":"J O Piña, R Raju, D M Roth, E W Winchester, C Padilla, J Iben, F R Faucz, J L Cotney, R N D'Souza","doi":"10.1177/00220345241256600","DOIUrl":"10.1177/00220345241256600","url":null,"abstract":"<p><p>Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which is the most common of the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study used the <i>Pax9</i><sup>-/-</sup> mouse model with a consistent phenotype of cleft secondary palate to investigate the role of <i>Pax9</i> in the process of palatal osteogenesis. Although prior research has identified the upregulation of Wnt pathway modulators <i>Dkk1</i> and <i>Dkk2</i> in <i>Pax9</i><sup>-/-</sup> palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between <i>Pax9+</i> and osteogenic populations. Loss of <i>Pax9</i> results in spatially restricted osteogenic domains bounded by <i>Dkk2</i>, which normally interfaces with <i>Pax9</i> in the mesenchyme. Moreover, the loss of <i>Pax9</i> leads to a disruption in the normal osteodifferentiaion of palatal osteogenic mesenchymal cells. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1412-1420"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Intraoral Scanners.","authors":"F Eggmann, M B Blatz","doi":"10.1177/00220345241271937","DOIUrl":"10.1177/00220345241271937","url":null,"abstract":"<p><p>Intraoral scanners (IOSs) have emerged as a cornerstone technology in digital dentistry. This article examines the recent advancements and multifaceted applications of IOSs, highlighting their benefits in patient care and addressing their current limitations. The IOS market has seen a competitive surge. Modern IOSs, featuring continuous image capture and advanced software for seamless image stitching, have made the scanning process more efficient. Patient comfort with IOS procedures is favorable, mitigating the discomfort associated with conventional impression taking. There has been a shift toward open data interfaces, notably enhancing interoperability. However, the integration of IOSs into large dental institutions is slow, facing challenges such as compatibility with existing health record systems and extensive data storage management. IOSs now extend beyond their use in computer-aided design and manufacturing, with software solutions transforming them into platforms for diagnostics, patient communication, and treatment planning. Several IOSs are equipped with tools for caries detection, employing fluorescence technologies or near-infrared imaging to identify carious lesions. IOSs facilitate quantitative monitoring of tooth wear and soft-tissue dimensions. For precise tooth segmentation in intraoral scans, essential for orthodontic applications, developers are leveraging innovative deep neural network-based approaches. The clinical performance of restorations fabricated based on intraoral scans has proven to be comparable to those obtained using conventional impressions, substantiating the reliability of IOSs in restorative dentistry. In oral and maxillofacial surgery, IOSs enhance airway safety during impression taking and aid in treating conditions such as cleft lip and palate, among other congenital craniofacial disorders, across diverse age groups. While IOSs have improved various aspects of dental care, ongoing enhancements in usability, diagnostic accuracy, and image segmentation are crucial to exploit the potential of this technology in optimizing patient care.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1349-1357"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Visualization of Oral Microbial Consortia.","authors":"S T Ramirez-Puebla, J L Mark Welch, G G Borisy","doi":"10.1177/00220345241251784","DOIUrl":"10.1177/00220345241251784","url":null,"abstract":"<p><p>Bacteria on the tongue dorsum (TD) form consortia tens to hundreds of microns in diameter organized around a core of epithelial cells. Whole-mount preparations have been instrumental in revealing their organization and specific microbial associations. However, their thickness and intricate 3-dimensional complexity present challenges for a comprehensive spatial analysis. To overcome these challenges, we employed a complementary approach: embedding in hydrophilic plastic followed by sectioning and postsectioning labeling. Samples were labeled by hybridization with multiplexed fluorescent oligonucleotide probes and visualized by spectral imaging and linear unmixing. Application of this strategy to TD biofilms improved the visualization of bacteria that were difficult to resolve in whole-mount imaging. <i>Actinomyces</i>, previously detected as patches, became resolved at the single-cell level. The filamentous taxa <i>Leptotrichia</i> and Lachnospiraceae, located at the core of the consortium, were regularly visualized whereas previously they were rarely detected when using whole mounts. <i>Streptococcus salivarius</i>, heterogeneously detected in whole mounts, were regularly and homogenously observed. Two-dimensional images provide valuable information about the organization of bacterial biofilms. However, they offer only a single plane of view for objects that can extend to hundreds of microns in thickness, and information obtained from such images may not always reflect the complexity of a 3-dimensional object. We combined serial physical sectioning with optical sectioning to facilitate the 3-dimensional reconstruction of consortia, spanning over 100 µm in thickness. Our work showcases the use of hydrophilic plastic embedding and sectioning for examining the structure of TD biofilms through spectral imaging fluorescence in situ hybridization. The result was improved visualization of important members of the human oral microbiome. This technique serves as a complementary method to the previously employed whole-mount analysis, offering its own set of advantages and limitations. Addressing the spatial complexity of bacterial consortia demands a multifaceted approach for a comprehensive and effective analysis.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1421-1427"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geo-Net: Geometry-Guided Pretraining for Tooth Point Cloud Segmentation.","authors":"Y Liu, X Liu, C Yang, Y Yang, H Chen, Y Yuan","doi":"10.1177/00220345241292566","DOIUrl":"10.1177/00220345241292566","url":null,"abstract":"<p><p>Accurately delineating individual teeth in 3-dimensional tooth point clouds is an important orthodontic application. Learning-based segmentation methods rely on labeled datasets, which are typically limited in scale due to the labor-intensive process of annotating each tooth. In this article, we propose a self-supervised pretraining framework, named Geo-Net, to boost segmentation performance by leveraging large-scale unlabeled data. The framework is based on the scalable masked autoencoders, and 2 geometry-guided designs, curvature-aware patching algorithm (CPA) and scale-aware reconstruction (SCR), are proposed to enhance the masked pretraining for tooth point cloud segmentation. In particular, CPA is designed to assemble informative patches as the reconstruction unit, guided by the estimated pointwise curvatures. Aimed at equipping the pretrained encoder with scale-aware modeling capacity, we also propose SCR to perform multiple reconstructions across shallow and deep layers. In vitro experiments reveal that after pretraining with large-scale unlabeled data, the proposed Geo-Net can outperform the supervised counterparts in mean Intersection of Union (mIoU) with the same amount of annotated labeled data. The code and data are available at https://github.com/yifliu3/Geo-Net.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1358-1364"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L Benz, K Heck, D Hevisov, D Kugelmann, P-C Tseng, Z Sreij, F Litzenburger, J Waschke, F Schwendicke, A Kienle, R Hickel, K-H Kunzelmann, E Walter
{"title":"Visualization of Pulpal Structures by SWIR in Endodontic Access Preparation.","authors":"L Benz, K Heck, D Hevisov, D Kugelmann, P-C Tseng, Z Sreij, F Litzenburger, J Waschke, F Schwendicke, A Kienle, R Hickel, K-H Kunzelmann, E Walter","doi":"10.1177/00220345241262949","DOIUrl":"10.1177/00220345241262949","url":null,"abstract":"<p><p>Endodontic access preparation is one of the initial steps in root canal treatments and can be hindered by the obliteration of pulp canals and formation of tertiary dentin. Until now, methods for direct intraoperative visualization of the 3-dimensional anatomy of teeth have been missing. Here, we evaluate the use of shortwave infrared radiation (SWIR) for navigation during stepwise access preparation. Nine teeth (3 anteriors, 3 premolars, and 3 molars) were explanted <i>en bloc</i> with intact periodontium including alveolar bone and mucosa from the upper or lower jaw of human body donors. Analysis was performed at baseline as well as at preparation depths of 5 mm, 7 mm, and 9 mm, respectively. For reflection, SWIR was used at a wavelength of 1,550 nm from the occlusal direction, whereas for transillumination, SWIR was passed through each sample at the marginal gingiva from the buccal as well as oral side at a wavelength of 1,300 nm. Pulpal structures could be identified as darker areas approximately 2 mm before reaching the pulp chamber using SWIR transillumination, although they were indistinguishable under normal circumstances. Furcation areas in molars appeared with higher intensity than areas with canals. The location of pulpal structures was confirmed by superimposition of segmented micro-computed tomography (µCT) images. By radiomic analysis, significant differences between pulpal and parapulpal areas could be detected in image features. With hierarchical cluster analysis, both segments could be confirmed and associated with specific clusters. The local thickness of µCTs was calculated and correlated with SWIR transillumination images, by which a linear dependency of thickness and intensity could be demonstrated. Lastly, by <i>in silico</i> simulations of light propagation, dentin tubules were shown to be a crucial factor for understanding the visibility of the pulp. In conclusion, SWIR transillumination may allow direct clinical live navigation during endodontic access preparation.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1375-1383"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}