DNA and cell biologyPub Date : 2024-08-01Epub Date: 2024-06-26DOI: 10.1089/dna.2024.0052
Yanfen Liu, Dongying Nie, Xueyong Lou
{"title":"The Cardiovascular Benefits of Glucagon-Like Peptide-1 Receptor Agonists as Novel Diabetes Drugs Are Mediated via the Suppression of miR-203a-3p and miR-429 Expression.","authors":"Yanfen Liu, Dongying Nie, Xueyong Lou","doi":"10.1089/dna.2024.0052","DOIUrl":"10.1089/dna.2024.0052","url":null,"abstract":"<p><p>Coronary artery disease (CAD) is associated with a high fatality rate and a heavy global health care burden. Glucagon-like peptide-1 (GLP-1) exerts positive cardiovascular effects, although the molecular mechanisms are unclear. Therefore, this study aimed to verify whether the cardioprotective effects of GLP-1 are mediated through the regulation of micro-RNA (miRNA) expression. Follow-up assessments were conducted for 116 patients with type 2 diabetes mellitus (T2DM) alone (controls) and 123 patients with both T2DM and CAD. After matching, each group comprised 63 patients, and age, body mass index, and serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides (TG), and hemoglobin A1C (HbA1c) were compared. Subsequently, the expression profiles of four circulating miRNAs (miR-203a-3p, miR-429, miR-205-5p, and miR-203b-5p) were assessed via quantitative reverse transcription real-time polymerase chain reaction in the 63 patients with diabetes and CAD between 6 months (baseline) and 12 months after the initiation of GLP-1 receptor (GLP-1R) therapy. As expected, the metabolic factors were significantly improved after 6 months of treatment with GLP-1R compared with pre-treatment values, and the expression levels of two of the miRNAs (miR-203a-3p and miR-429) decreased from baseline levels in those with diabetes and CAD. The results suggest that the cardiovascular benefits induced by GLP-1R are mediated via suppressed expression of two miRNAs: miR-203a-3p and miR-429.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"387-394"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the Effects of AL049796.1 Silencing in Inhibiting High Glucose-Induced Colorectal Cancer Progression.","authors":"Yan Liu, Qi Wang, Zicheng Sun, Haijun Chen, Luxiao Yue, Jiachen Yang, Zhe Li, Xiaohong Lv, Xiaojun Zhou","doi":"10.1089/dna.2024.0069","DOIUrl":"10.1089/dna.2024.0069","url":null,"abstract":"<p><p>Patients with colorectal cancer (CRC) and diabetes share many risk factors. Despite a strong association between diabetes and CRC being widely studied and confirmed, further genetic research is needed. This study found higher AL049796.1 and TEA domain transcription factor 1 (TEAD1) levels (both mRNA and protein) in CRC tissues of diabetic patients compared with nondiabetics, but no significant difference in miR-200b-3p levels. A positive correlation between AL049796.1 and TEAD1 protein existed regardless of diabetes status, whereas miR-200b-3p was only negatively correlated with TEAD1 protein in nondiabetic CRC tissues. <i>In vitro</i> experiments have shown that high glucose (HG) treatment increased AL049796.1 in CRC cells, and AL049796.1 silencing reduced HG-induced proliferation, migration and invasion, as well as connective tissue growth factor, cysteine-rich angiogenic inducer 61, and epidermal growth factor receptor protein expression. Mechanistic investigations indicated that AL049796.1 could mitigate suppression of miR-200b-3p on TEAD1 posttranscriptionally by acting as a competitive binder. <i>In vivo</i>, subcutaneous CRC tumors in streptozotocin (STZ)-induced mice grew significantly faster; AL049796.1 silencing did not affect the growth of subcutaneous CRC tumors but significantly reduced that of STZ-induced mice. Our study suggests that AL049796.1 independently contributes to the risk of CRC in diabetic patients, highlighting its potential as both a therapeutic target and a novel biomarker for CRC among individuals with diabetes.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"401-413"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA and cell biologyPub Date : 2024-08-01Epub Date: 2024-07-03DOI: 10.1089/dna.2024.0044
Sepideh Sarfi, Ehsaneh Azaryan, Mohsen Naseri
{"title":"Immune System of Dental Pulp in Inflamed and Normal Tissue.","authors":"Sepideh Sarfi, Ehsaneh Azaryan, Mohsen Naseri","doi":"10.1089/dna.2024.0044","DOIUrl":"10.1089/dna.2024.0044","url":null,"abstract":"<p><p>Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"369-386"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA and cell biologyPub Date : 2024-07-01Epub Date: 2024-05-03DOI: 10.1089/dna.2023.0391
Mei-Fang Zhao, Song-Lin Zhang, YangZiYu Xiang, Qian Wang, Gao-Hui Cao, Ping-Ping Zhang, Liang-Liang Fan, Rong Yu, Ya-Li Li
{"title":"A <i>de novo</i> Mutation (p.Gln277X) of <i>Cyclin D2</i> is Responsible for a Child with Megalencephaly-Polymicrogyria-Polydactyly-Hydrocephalus Syndrome.","authors":"Mei-Fang Zhao, Song-Lin Zhang, YangZiYu Xiang, Qian Wang, Gao-Hui Cao, Ping-Ping Zhang, Liang-Liang Fan, Rong Yu, Ya-Li Li","doi":"10.1089/dna.2023.0391","DOIUrl":"10.1089/dna.2023.0391","url":null,"abstract":"<p><p>Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH), a type of overgrowth syndrome, is characterized by progressive megalencephaly, cortical brain malformations, and distal limb anomalies. Previous studies have revealed that the overactivity of the phosphatidylinositol 3-kinase-Protein kinase B pathway and the increased cyclin D2 (CCND2) expression were the main factors contributing to this disease. Here, we present the case of a patient who exhibited megalencephaly, polymicrogyria, abnormal neuronal migration, and developmental delay. Serum tandem mass spectrometry and chromosome examination did not detect any metabolic abnormalities or copy number variants. However, whole-exome sequencing and Sanger sequencing revealed a <i>de novo</i> nonsense mutation (NM_001759.3: c.829C>T; p.Gln277X) in the <i>CCND2</i> gene of the patient. Bioinformatics analysis predicted that this mutation may disrupt the structure and surface charge of the CCND2 protein. This disruption could potentially prevent polyubiquitination of CCND2, leading to its resistance against degradation. Consequently, this could drive cell division and growth by altering the activity of key cell cycle regulatory nodes, ultimately contributing to the development of MPPH. This study not only presents a new case of MPPH and expands the mutation spectrum of <i>CCND2</i> but also enhances our understanding of the mechanisms connecting <i>CCND2</i> with overgrowth syndromes.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"325-330"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA and cell biologyPub Date : 2024-07-01Epub Date: 2024-04-29DOI: 10.1089/dna.2024.0062
Evan J Brettrager, Aaron J Frederick, Robert C A M van Waardenburg
{"title":"Zymolyase Treatment of <i>Saccharomyces cerevisiae</i> Affects Cellular Proteins and Degrades Tyrosyl-DNA Phosphodiesterase I.","authors":"Evan J Brettrager, Aaron J Frederick, Robert C A M van Waardenburg","doi":"10.1089/dna.2024.0062","DOIUrl":"10.1089/dna.2024.0062","url":null,"abstract":"<p><p><i>Saccharomyces cerevisiae</i> is a genetically tractable, affordable, and extensively documented eukaryotic single-cell model organism. This budding yeast is amenable for the development of genetic and biochemical experiments and is frequently used to investigate the function, activity, and mechanism of mammalian proteins. However, yeast contains a cell wall that hinders select assays including organelle isolation. Lytic enzymes, with Zymolyase as the most effective and frequently used tool, are utilized to weaken the yeast cell wall resulting in yeast spheroplasts. Spheroplasts are easily lysed by, for example, osmotic-shock conditions to isolate yeast nuclei or mitochondria. However, during our studies of the DNA repair enzyme tyrosyl-DNA phosphodiesterase I (Tdp1), we encountered a negative effect of Zymolyase. We observed that Zymolyase treatment affected the steady-state protein levels of Tdp1. This was revealed by inconsistencies in technical and biological replicate lysates of plasmid-born galactose-induced expression of Tdp1. This off-target effect of Zymolyase is rarely discussed in articles and affects a select number of intracellular proteins, including transcription factors and assays such as chromatin immunoprecipitations. Following extensive troubleshooting, we concluded that the culprit is the Ser-protease, Zymolyase B, component of the Zymolyase enzyme mixture that causes the degradation of Tdp1. In this study, we report the protocols we have used, and our final protocol with an easy, affordable adaptation to any assay/protocol involving Zymolyase.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"353-361"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA and cell biologyPub Date : 2024-07-01Epub Date: 2024-04-30DOI: 10.1089/dna.2023.0378
Weijun Zhao, Xilin Hu, Zixuan Chen, Xinjian Li
{"title":"Major Facilitator Superfamily Domain Containing 12 Is Overexpressed in Lung Cancer and Exhibits an Oncogenic Role in Lung Adenocarcinoma Cells.","authors":"Weijun Zhao, Xilin Hu, Zixuan Chen, Xinjian Li","doi":"10.1089/dna.2023.0378","DOIUrl":"10.1089/dna.2023.0378","url":null,"abstract":"<p><p>Major facilitator superfamily domain containing 12 (MFSD12) regulates lysosomal cysteine import and promotes the proliferation and survival of melanoma cells. However, the expression and function of MFSD12 in other cancers, particularly in lung cancer, remain unclear. The expression of MFSD12 across various types of cancers and corresponding control tissues was examined using TIMER. MFSD12 expression in lung adenocarcinoma (LUAD) and its correlation with distinct clinicopathological features of LUAD patients were analyzed with UALCAN. The correlation between MFSD12 expression and survival of LUAD patients was assessed using the R package, survival, and the relationship between MFSD12 expression and immune infiltration status in LUAD was investigated using CIBERSORT. In addition, MFSD12 expression was knocked down in PC9 LUAD cells and their proliferation, capacity for expansion, cell cycle, apoptosis, and migration/invasion were evaluated through CCK-8 assays, colony formation assays, 7-AAD staining, Annexin V/PI staining, and Transwell assays, respectively. The stemness of these PC9 cells was determined through Western blotting, flow cytometry, and tumor sphere formation assays. MFSD12 mRNA levels were significantly elevated in multiple types of cancers, including LUAD. MFSD12 expression was also positively correlated with cancer stage, nodal metastasis, and infiltration of various immune cells in LUAD, and high MFSD12 levels predicted poor survival among LUAD patients. Knockdown of MFSD12 in PC9 cells resulted in decreased proliferation, attenuated colony formation capacity, cell cycle arrest, elevated apoptosis, impaired migration/invasion, and reduced stemness in PC9 cells. <i>MFSD12</i> is an oncogene in LUAD.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"331-340"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA and cell biologyPub Date : 2024-07-01Epub Date: 2024-05-31DOI: 10.1089/dna.2024.0099
Ziyan Pan, Mohammed Eslam
{"title":"MERTK and Fibrosis: A New Target for Therapy.","authors":"Ziyan Pan, Mohammed Eslam","doi":"10.1089/dna.2024.0099","DOIUrl":"10.1089/dna.2024.0099","url":null,"abstract":"<p><p>Organ fibrosis is a devastating medical challenge that is collectively responsible for an estimated 45% of all deaths in developed countries and poses a substantial health and economic burden. The process of fibrosis has common characteristics that can occur in various organs, such as the liver, kidney, lung, and skin. Currently, there is a paucity of effective treatments available for fibrosis. Therefore, it is crucial to identify new approaches to find potential therapeutic targets. Genetic studies have shown great promise in advancing the drug development process. Mer tyrosine kinase (MERTK) was recently identified as a crucial regulator of fibrosis that specifically controls the activity of transforming growth factor beta (TGFβ). In this brief review, we provide an overview of the potential role of MERTK as a targeted and valuable approach for treating organ fibrosis.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"311-314"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA and cell biologyPub Date : 2024-07-01Epub Date: 2024-06-17DOI: 10.1089/dna.2023.0434
Lin Liu, Guanlong Ye, Wei Huang, Yang He, Donghao Xie
{"title":"Shen-Qi-Ling-Bi Decoction Inhibits Colorectal Cancer Cell Growth by Inducing Ferroptosis Through Inactivation of PI3K/AKT Signaling Pathway.","authors":"Lin Liu, Guanlong Ye, Wei Huang, Yang He, Donghao Xie","doi":"10.1089/dna.2023.0434","DOIUrl":"10.1089/dna.2023.0434","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a common malignancy with poor prognosis. Shen-Qi-Ling-Bi Decoction (SQLB), a classic traditional Chinese medicine (TCM) formula, was found to exert antitumor effects in CRC. This study aimed to explore the biological functions of SQLB in CRC. Cell Counting Kit 8 (CCK-8), wound healing, and transwell invasion assays <i>in vitro</i> were used to evaluate the antitumor effects of SQLB in CRC cells. In addition, ferroptosis in CRC cells was determined by evaluating Fe<sup>2+</sup> content and lipid ROS, MDA, and GSH levels. SQLB treatment partially reduced CRC cell proliferation, migration, and invasion; however, a ferroptosis inhibitor, ferrostatin-1 (Fer-1), abolished these effects. In addition, SQLB treatment triggered CRC cell ferroptosis, as evidenced by increased Fe<sup>2+</sup>, lipid ROS, and MDA levels and decreased GSH levels; conversely, these levels were reversed by Fer-1. Furthermore, SQLB notably suppressed tumor growth in nude mice <i>in vivo.</i> Meanwhile, SQLB decreased phosphorylated PI3K and AKT levels, downregulated Nrf2, GPX4, and SLC7A11 levels, and upregulated ACSL4 levels in CRC cells and in tumor tissues; however, these effects were reversed by Fer-1. Collectively, SQLB inhibited CRC cell proliferation, invasion, and migration by triggering ferroptosis through inactivation of the PI3K/AKT signaling pathway. These findings demonstrate a novel mechanism of action for SQLB in the treatment of CRC.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"315-324"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>FOXO1</i> Single-Nucleotide Polymorphisms Are Associated with Bleeding Severity and Sensitivity of Glucocorticoid Treatment of Pediatric Immune Thrombocytopenia.","authors":"Xingjuan Xie, Hao Gu, Jingyao Ma, Lingling Fu, Jie Ma, Jialu Zhang, Runhui Wu, Zhenping Chen","doi":"10.1089/dna.2023.0431","DOIUrl":"10.1089/dna.2023.0431","url":null,"abstract":"<p><p>Immune thrombocytopenia (ITP) is an autoimmune-mediated hemorrhagic disease. Emerging evidence indicates that <i>FOXO1</i> SNPs are related to the immune dysregulation of several autoimmune diseases suggesting that FOXO1 may be involved in inflammation and pathologic activities in patients with ITP. This study aimed to evaluate whether <i>FOXO1</i> gene single-nucleotide polymorphisms (SNPs) are associated with susceptibility to ITP and clinical priorities of concern include bleeding severity and sensitivity of glucocorticoid treatment. This study recruited 327 newly diagnosed ITP and 220 healthy controls. Four SNPs (rs17446593, rs17446614, rs2721068, and rs2721068) of the <i>FOXO1</i> gene were detected using the Sequenom MassArray system. Bleeding severity were classified into the mild and severe groups based on the bleeding scores. ITP patients were classified as sensitive and insensitive to glucocorticoid treatment according to the practice guideline for ITP (2019 version). The frequencies of the four SNPs did not show any significant differences between the ITP and healthy control groups. Patients with AA genotype at rs17446593 (<i>p</i> = 0.009) and GG genotype at rs17446614 (<i>p</i> = 0.009) suffered more severe bleeding than patients without them. Carriers of haplotype G<sub>rs17446593</sub>A<sub>rs17446614</sub>C<sub>rs2721068</sub>T<sub>rs2755213</sub> were protective to severe bleeding (<i>p</i> = 0.002). The AA genotype at rs17446593 was significantly higher in ITP patients sensitive to glucocorticoid treatment than in those insensitive to glucocorticoid treatment (<i>p</i> = 0.03). Haplotype G<sub>rs17446593</sub>G<sub>rs17446614</sub>T<sub>rs2721068</sub>T<sub>rs2755213</sub> increases the risk of glucocorticoid resistance (<i>p</i> = 0.007). Although <i>FOXO1</i> gene polymorphisms were not associated with susceptibility to ITP, the AA genotype at rs17446593 and GG genotype at rs17446614 were associated with bleeding severity. Haplotype GACT have a protective effect against severe bleeding. Patients with AA genotype at rs17446593 may tend to have good responds to glucocorticoid treatment. However, the <i>FOXO1</i> gene haplotype GGTT increases the risk of glucocorticoid-resistant. Trial registration: ChiCTR1900022419.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"279-287"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}