{"title":"Electroacupuncture Serum Protects against Blood-brain Barrier Damage after Ischemic Stroke by Regulating Pericytes <i>in vitro</i>.","authors":"Hanrui Zhang, Hequn Lyv, Yaoting Feng, Yongjun Peng","doi":"10.2174/0115672026361204241115112340","DOIUrl":"10.2174/0115672026361204241115112340","url":null,"abstract":"<p><strong>Background: </strong>Electroacupuncture (EA) exerts a protective role in Blood-brain Barrier (BBB) damage after ischemic stroke, but whether this effect involves the regulation of the pericytes <i>in vitro</i> is unclear.</p><p><strong>Methods: </strong>The <i>in vitro</i> BBB models were established with brain microvascular endothelial cells (BMECs) and pericytes, and the co-cultured cells were randomly divided into three groups: the control group, oxygen-glucose deprivation/reoxygenation (OGD/R) group and EA group. OGD/R was performed to simulate cerebral ischemia-reperfusion <i>in vitro</i>. EA serum was prepared by EA treatment at the \"Renzhong\" (GV26) and \"Baihui\" (GV20) acupoints in middle cerebral artery occlusion/ reperfusion rats. Furthermore, the characteristics of BMECs and pericytes were identified with immunological staining. The cell morphology of the BBB model was observed using an inverted microscope. The function of BBB was measured with transendothelial electrical resistance (TEER) and sodium fluorescein, and the viability, apoptosis, and migration of pericytes were detected by cell counting kit-8, flow cytometry, and Transwell migration assay.</p><p><strong>Results: </strong>BMECs were positive staining for Factor-VIII, and pericytes were positive staining for the α-SMA and NG2. EA serum improved cell morphology of the BBB model, increased TEER and decreased sodium fluorescein in OGD/R condition. Besides, EA serum alleviated pericytes apoptosis rate and migration number, and enhanced pericytes viability rate in OGD/R condition.</p><p><strong>Conclusion: </strong>EA serum protects against BBB damage induced by OGD/R in vitro, and this protection might be achieved by attenuating pericytes apoptosis and migration, as well as enhancing pericytes viability. The findings provided new evidence for EA as a medical therapy for ischemic stroke.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"491-502"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microthrombosis at the Ultra-early Stages after Experimental Subarachnoid Hemorrhage Results in Early Brain Injury.","authors":"Masaki Kumagai, Yusuke Egashira, Nozomi Sasaki, Shinsuke Nakamura, Yoshiki Kuse, Hirohumi Matsubara, Yukiko Enomoto, Tsuyoshi Izumo, Hideaki Hara, Masamitsu Shimazawa","doi":"10.2174/0115672026362878241220065541","DOIUrl":"10.2174/0115672026362878241220065541","url":null,"abstract":"<p><strong>Introduction: </strong>Early Brain Injury (EBI) significantly contributes to poor neurological outcomes and death following subarachnoid hemorrhage (SAH). The mechanisms underlying EBI post-SAH remain unclear. This study explores the relationship between serial cerebral blood flow (CBF) changes and neurological symptoms, as well as the mechanisms driving CBF changes in the ultra-early stages after experimental SAH in mice.</p><p><strong>Methods: </strong>SAH was induced by endovascular perforation in male ddY mice. Mice were sacrificed at 6, 12, 24, and 48 h after behavioral tests using the modified neurological score and grid walking test, and CBF was measured via Laser Speckle Flow Imaging (LSFI). Neurofunctional evaluation, CBF analysis, and Western blotting were used to assess SAH-induced damage.</p><p><strong>Results: </strong>Neurological symptoms were significantly worse at 12 h post-SAH compared to sham (9.5 ± 1.7 vs. 25.6 ± 0.63, respectively; p < 0.0001). CBF was significantly reduced at 12 h post- SAH compared to sham (35.34 ± 8.611 vs. 91.06 ± 12.45, respectively; p < 0.0001). Western blotting revealed significantly elevated thrombin and matrix metalloproteinase 9 levels 12 h post-SAH (p < 0.05).</p><p><strong>Conclusion: </strong>Our results suggest that microthrombus formation peaked at 12 h post-SAH, potentially causing EBI and worsening neurological symptoms. Microthrombus formation in the ultraearly stages may represent a novel therapeutic target for managing EBI.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"529-536"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenrui Zhang, Liaoyu Li, Feng Wang, Hailong Du, Xiaoliang Wang, Xiaoyu Gu, Xinlei Liu, Haie Han, Jianliang Wu, Jianping Sun
{"title":"Inhibition of Circ0001679 Alleviates Ischemia/Reperfusion-induced Brain Injury via miR-216/TLR4 Regulatory Axis.","authors":"Chenrui Zhang, Liaoyu Li, Feng Wang, Hailong Du, Xiaoliang Wang, Xiaoyu Gu, Xinlei Liu, Haie Han, Jianliang Wu, Jianping Sun","doi":"10.2174/0115672026352738241205105129","DOIUrl":"10.2174/0115672026352738241205105129","url":null,"abstract":"<p><strong>Background: </strong>Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.</p><p><strong>Methods: </strong>The Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) model was employed in primary mouse astrocytes, and the Middle Cerebral Artery Occlusion (MCAO) model was established in mice to mimic ischemia-reperfusion-induced injury. Si-circ0001679, anti-miR- 216, and TLR4 ORF-clone were transfected either in cells or mice to study the molecular mechanisms during I/R-induced injury. Inflammation and oxidative stress were monitored after treatment.</p><p><strong>Results: </strong>Upregulated gene expression of circ0001679 was noticed in both OGD/R-treated primary mouse astrocytes and MCAO-induced mouse brain tissue. Silencing circ0001679 reduced cellular damage, inflammation, and oxidative stress induced by OGD/R treatment. Knocking down of circ0001679 alone with either miR-216 inhibition or TLR4 overexpression increased the inflammation response and oxidative stress compared to circ0001679 silencing only. Moreover, inhibition of circ0001679 attenuated brain injury in MCAO-treated mice via reduced infarction, neuronal damage, apoptosis, inflammation, and oxidative stress.</p><p><strong>Conclusion: </strong>This study unveiled a novel regulatory axis of circ0001679-miR-216-TLR4 in I/Rinduced brain injury. Targeting circ0001679 may represent a promising therapeutic strategy for I/R-induced brain injury.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"472-482"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Etiologies and Risk Factors by Sex and Age in Young Adult Patients with Ischemic Stroke.","authors":"Linrui Huang, Yanhua Wang, Yanan Wang, Simiao Wu","doi":"10.2174/0115672026370844241223080012","DOIUrl":"10.2174/0115672026370844241223080012","url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study was to explore etiologies and risk factors by age and sex in young adult patients with ischemic stroke.</p><p><strong>Methods: </strong>We recruited patients with ischemic stroke aged between 18 and 49 years. We assessed pathological etiologies by the Trial of Org 10,172 in Acute Stroke Treatment (TOAST) classification and risk factors by the International Pediatric Stroke Study (IPSS) classification. We explored the distribution of etiologies and risk factors by age and sex and investigated baseline features associated with functional outcomes at 3 months.</p><p><strong>Results: </strong>Of 8521 stroke patients consecutively admitted, 1017 patients (11.9%) aged between 18-49 years, of whom large artery atherosclerosis was the most common etiology (n=375, 36.9%), followed by other determined cause (n=194, 19.1%) and undetermined cause (n=184, 18.1%). Compared to male patients, female patients had more cardioembolism (16.34% vs 8.42%) and less small artery occlusion (8.56% vs 17.76%). As age increased, the proportions of large artery atherosclerosis (P <0.001) and small artery occlusion (P <0.001) increased, and the proportion of other determined causes decreased (P <0.001). Of 184 patients with undetermined causes, 173 (94.0%) had at least one IPSS risk factor. A higher serum level of D-dimer at baseline was associated with an increased risk of unfavorable outcome (OR 1.118, 95% CI 1.052- 1.189), adjusting for the effect of age and stroke severity.</p><p><strong>Conclusion: </strong>Approximately one-fifth of young patients with ischemic stroke had undetermined etiology, for whom the IPSS classification helps to explore risk factors. A higher level of Ddimer was associated with a higher risk of unfavorable outcomes at 3 months.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"574-583"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nomogram Models for Predicting Poor Prognosis in Lobar Intracerebral Hemorrhage: A Multicenter Study.","authors":"Yijun Lin, Anxin Wang, Xiaoli Zhang, Mengyao Li, Yi Ju, Wenjuan Wang, Xingquan Zhao","doi":"10.2174/0115672026365579241220073506","DOIUrl":"10.2174/0115672026365579241220073506","url":null,"abstract":"<p><strong>Objective: </strong>We aimed to investigate the prognostic factors associated with lobar intracerebral hemorrhage (ICH) and to construct convenient models to predict 3-month unfavorable functional outcomes or all-cause death.</p><p><strong>Methods: </strong>Our study included 322 patients with spontaneous lobar ICH from 13 hospitals in Beijing as a derivation cohort. The clinical outcomes were unfavorable functional prognosis, defined as a modified Rankin Scale (mRS) score of 4-6, or all-cause death. Variable selection was performed using the Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and two nomogram models were constructed. Additionally, multivariable logistic regression analysis was conducted to identify the factors associated with unfavorable prognosis. Finally, the Area Under The Receiver Operating Characteristic Curve (AUROC), calibration curve, and decision curve analyses (DCA) were performed to evaluate the models in both the derivation and external validation cohorts.</p><p><strong>Results: </strong>Predictive factors for unfavorable functional outcomes in lobar ICH included age, dyslipidemia, ICH volume, NIHSS score, Stroke-Associated Pneumonia (SAP), and lipidlowering therapy. The model included age, GCS score, NIHSS score, antihypertensive therapy, in-hospital rehabilitation training, and ICH volume to predict all-cause mortality. Our models exhibited good discriminative ability, with an AUC of 0.897 (95% CI: 0.862-0.933) for unfavorable functional outcomes and 0.894 (95% CI: 0.870-0.918) for death. DCA and calibration curves confirmed the models' excellent clinical decision-making and calibration capabilities.</p><p><strong>Conclusion: </strong>Nomogram models for predicting 3-month unfavorable outcomes or death in patients with lobar ICH were developed and independently validated in this study, providing valuable prognostic information for clinical decision-making.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"595-605"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Basic Fibroblast Growth Factor-releasing Polyglycolic Acid Duras Improve Neurological Function after Cerebral Infarction.","authors":"Yoshiro Ito, Ayako Oyane, Hideo Tsurushima, Yuji Matsumaru, Eiichi Ishikawa","doi":"10.2174/0115672026371969241224112004","DOIUrl":"10.2174/0115672026371969241224112004","url":null,"abstract":"<p><strong>Objective: </strong>Regenerative therapy using stem cells to treat cerebral infarction is currently in the research phase. However, this method is costly. It also faces other significant challenges, including optimization of timing, delivery methods, and dosage. Therefore, more practical and effective therapies are required. Bioabsorbable artificial dura mater made from nonwoven Polyglycolic Acid (PGA) fabric is used clinically to treat cerebral infarction. Basic Fibroblast Growth Factor (bFGF) has attracted considerable attention as a potential therapeutic candidate for the treatment of cerebral infarctions. In this study, we aimed to prepare a bFGF-releasing PGA dura mater and investigate its therapeutic efficacy for the recovery of neurological function in a mouse model of focal cerebral infarction.</p><p><strong>Methods: </strong>An artificial dura mater (Durawave) made from nonwoven PGA fabric was subjected to oxygen plasma treatment, followed by bFGF adsorption. The release of bFGF from the resulting PGA dura mater was evaluated <i>in vitro</i> using enzyme-linked immunosorbent assays. bFGF-releasing PGA dura mater was placed at the site of induced cerebral infarctions in mice. Neurological function was assessed 14 days after insertion, followed by a histological assessment.</p><p><strong>Results: </strong>The prepared PGA dura mater released bFGF in a dose-dependent manner. Neurological function in the bFGF-treated groups was significantly better than that in the control group. bFGFreleasing PGA dura mater also significantly increased the number of neural progenitor cells in the peri-infarct cortex and striatum and showed a trend toward promoting angiogenesis.</p><p><strong>Conclusion: </strong>bFGF-releasing PGA dura mater improved neurological function in a mouse model of focal cerebral infarction.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"584-594"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanotechnology in Drug Delivery: An Overview of Developing the Blood Brain Barrier.","authors":"Rasmita Dash, Subhankar Samanta, Bikash Ranjan Jena, Soumyaranjan Pradhan","doi":"10.2174/0115672026346307240919112023","DOIUrl":"10.2174/0115672026346307240919112023","url":null,"abstract":"<p><p>The close connection between the brain microvascular endothelial cells (BMECs) that are enclosed within this barrier is the result of an intracellular junction, which is responsible for the constricted connection. The regulation and control of drug delivery systems both require nanoparticles, which are extremely small particles made up of a variety of materials, including polymers, metals, and other chemicals. Nanoparticles are a crucial component of the regulation and control of drug delivery systems. There is a possibility that nanomaterials composed of inorganic chemicals, such as gold nanoparticles, could be utilized in the treatment of neurodegenerative illnesses like Parkinson's disease. In addition to this, they are used as nano-carriers for the aim of distributing drugs to the region of the brain that is being targeted. There are a number of advantages that are easily apparent when compared to other methods of administering drugs for neurological diseases. The current review demonstrates both the advantages and disadvantages of utilizing a wide variety of nanomaterials for brain delivery, as well as the potential impact that this will have in the future on the safety and effectiveness of patient care.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"347-358"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xie Wang, Hong Chen, Nan Shao, Xiaoyan Zhang, Chenye Huang, Xiangjun Li, Juan Zhang, Ze Chang, Le Tang, Daojun Xie
{"title":"Protective Effect of Aloe-emodin on Cognitive Function in Copper-loaded Rats Based on The Inhibition of Hippocampal Neuron Ferroptosis.","authors":"Xie Wang, Hong Chen, Nan Shao, Xiaoyan Zhang, Chenye Huang, Xiangjun Li, Juan Zhang, Ze Chang, Le Tang, Daojun Xie","doi":"10.2174/0115672026348862241003042336","DOIUrl":"10.2174/0115672026348862241003042336","url":null,"abstract":"<p><strong>Background: </strong>Aloe-emodin (AE), a monomer derived from traditional Chinese medicine, has demonstrated remarkable efficacy in the clinical management of cognitive disorders. Ferroptosis (FPT), a specialized form of programmed cell death, plays a critical role in the pathological progression of various cognitive diseases.</p><p><strong>Methods: </strong>This study explored the therapeutic potential of AE in a rat model of Wilson's disease cognitive impairments (WDCI) and examined whether these effects are mediated through the silencing information regulator 1 (SIRT1)-regulated FPT signaling pathway. Employing techniques, such as the Morris water maze (MWM), Hematoxylin & eosin (H&E) staining, Transmission electron microscopy (TEM), Immunofluorescence (IF), assessments of oxidative stress markers, and measurements of FPT-related protein levels, we evaluated the extent of SIRT1-mediated FPT and the therapeutic efficacy of AE.</p><p><strong>Results: </strong>The findings from the WD copper-loaded rat model experiments revealed that MWM, H&E, TEM, and IF outcomes indicated AE's potential to promote the restoration of learning and memory functions, ameliorate hippocampal neuronal morphological damage, and preserve cell membrane integrity. Results from western blot (WB) and ELISA analyses demonstrated that AE markedly upregulated the expression of SIRT1, nuclear factor erythroid-2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SCL7A11), and glutathione peroxidase 4 (GPX4) proteins while simultaneously reversing the expression of oxidative stress markers such as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), and reactive oxygen species (ROS). Consequently, we posit that AE may attenuate WD copper-loaded rat model hippocampal neuronal FPT by activating the SIRT1-mediated signaling pathway.</p><p><strong>Conclusion: </strong>These findings suggested that AE mitigates WD copper-loaded rat model hippocampal neuronal damage through the activation of SIRT1-mediated FPT, thereby presenting a valuable candidate Chinese herbal monomer for the clinical treatment of WDCI.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"458-471"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wnt Signaling, Musculoskeletal Disease, and the Onset of Dementia and Alzheimer's Disease.","authors":"Kenneth Maiese","doi":"10.2174/1567202622999241211154331","DOIUrl":"10.2174/1567202622999241211154331","url":null,"abstract":"","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"523-528"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma Osteoprotegerin and Cognitive Impairment after Ischemic Stroke.","authors":"Xinyue Chang, Pinni Yang, Yi Liu, Yu He, Xiaoli Qin, Beiping Song, Quan Yu, Jiawen Fei, Mengyao Shi, Daoxia Guo, Yanbo Peng, Jing Chen, Aili Wang, Tan Xu, Jiang He, Yonghong Zhang, Zhengbao Zhu","doi":"10.2174/0115672026368528250113080256","DOIUrl":"10.2174/0115672026368528250113080256","url":null,"abstract":"<p><strong>Background: </strong>Plasma osteoprotegerin (OPG) has been linked to poor prognosis following stroke, but its impact on post-stroke cognitive impairment (PSCI) is unknown. The purpose of our work was to analyze the relationship of OPG with PSCI.</p><p><strong>Methods: </strong>Our study included 613 ischemic stroke subjects with plasma OPG levels. We used the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) to assess PSCI. PSCI was defined as MMSE score <25 or MoCA score <23.</p><p><strong>Results: </strong>As assessed by the MMSE score, the adjusted odds ratio for PSCI in the highest OPG tertile was 1.77, with a 95% confidence interval of 1.09 to 2.89 (P<sub>trend</sub>=0.021), compared to that in the lowest tertile. We observed a positive linear relationship of plasma OPG levels with 3- month PSCI (P for linearity=0.046). Incorporating plasma OPG into conventional risk factors enhanced PSCI risk reclassification (all P <0.05). Consistent results were discovered when PSCI was evaluated using the MoCA score.</p><p><strong>Conclusion: </strong>High plasma OPG levels were related to an elevated risk of 3-month PSCI, indicating that OPG might be an effective biomarker for predicting PSCI.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"545-553"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}