Central nervous system agents in medicinal chemistry最新文献

筛选
英文 中文
Study of the Antidepressant Effects of the Combination of Agmatine and Melatonin Following Restraint Stress in Mice: the Role of Oxidative Factors.
Central nervous system agents in medicinal chemistry Pub Date : 2025-03-25 DOI: 10.2174/0118715249347833250307041355
Saeed Mehrzadi, Ali Jamshidi Naeini, Fahime Azimirad, Azam Hosseinzadeh
{"title":"Study of the Antidepressant Effects of the Combination of Agmatine and Melatonin Following Restraint Stress in Mice: the Role of Oxidative Factors.","authors":"Saeed Mehrzadi, Ali Jamshidi Naeini, Fahime Azimirad, Azam Hosseinzadeh","doi":"10.2174/0118715249347833250307041355","DOIUrl":"https://doi.org/10.2174/0118715249347833250307041355","url":null,"abstract":"<p><strong>Objective: </strong>Major Depressive Disorder (MDD) is a psychiatric disorder that has a tight connection to stressful experiences, decreased levels of endogenous antioxidants and enhanced levels of oxidative stress. We drafted this research to define the results of combining agmatine and melatonin on stress-induced depression in mice.</p><p><strong>Methods: </strong>Experimental groups included the non-stressed group treated with vehicle (ethanol at a concentration of 0.0005%), stressed vehicle (ethanol at a concentration of 0.0005%)-treated group, group treated with fluoxetine (10 mg/kg/day), group treated with melatonin (10 mg/kg/day), group treated with agmatine (1 mg/kg/day), group receiving a combination of melatonin (10 mg/kg/day) and agmatine (1 mg/kg/day). The animals were subjected to restraint stress for two hours daily for a duration of one week, concurrently with the daily oral administration of agents through drinking water. Open field test and forced swimming test were operated on the 8th day. The oxidative stress markers were measured in the mice hippocampus.</p><p><strong>Results: </strong>Stress led to the elevation of immobility time. The combination group showed a significant effect in comparison to the agmatine and melatonin groups. The combination of melatonin and agmatine was successful in the elevation of hippocampus catalase activity; and this effect was comparable in the fluoxetine group. We observed enhancement of superoxide dismutase activity in treatment groups and reduction in malondialdehyde levels in melatonin, agmatine and combination groups.</p><p><strong>Conclusion: </strong>A combination of agmatine and melatonin improves stress-induced depression more effectively than each alone, which may result from suppressing oxidative stress.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Pharmacophore Responsible for the JNK3 Enzyme Inhibition using KPLS-based QSAR Analysis.
Central nervous system agents in medicinal chemistry Pub Date : 2025-03-03 DOI: 10.2174/0118715249345667250216034023
Ravi Kumar Rajan, Maida Engels, Umaa Kuppuswamy
{"title":"Identification of Pharmacophore Responsible for the JNK3 Enzyme Inhibition using KPLS-based QSAR Analysis.","authors":"Ravi Kumar Rajan, Maida Engels, Umaa Kuppuswamy","doi":"10.2174/0118715249345667250216034023","DOIUrl":"https://doi.org/10.2174/0118715249345667250216034023","url":null,"abstract":"<p><strong>Background: </strong>The pharmacophoric approach relies on the theory of possessing ubiquitous chemical functionalities, and carrying a uniform spatial conformation that provides a route to enhanced potency on the same target receptor. JNK3, also known as c-Jun N-terminal kinase 3, is a protein kinase that plays a crucial role in various cellular processes, particularly in the central nervous system (CNS). In this study, a kernel-based partial least square (KPLS)- based Two-dimensional Quantitative structural activity relationship (2D QSAR) model to predict pharmacophores responsible for c-Jun-N-terminal kinase 3 (JNK3) inhibition.</p><p><strong>Method: </strong>A library of small molecule JNK3 inhibitors was created from the literature, and a predictive model was built using Canvas 2.6.</p><p><strong>Result: </strong>The analysis revealed key structural determinants of activity. Compounds with high pIC50 values (>6) showed numerous favorable contributions, particularly secondary benzamide nitrogen and methylene groups. Steric effects were more influential than inductive effects, with bulkier groups like t-butyl reducing activity. Positive contributions were observed with OH, OCH3, and -F substituents, while unfavorable effects were linked to tertiary nitrogen, methyl, and primary amino groups. Substituted sulphonamides and benzotriazole moieties enhanced activity unless modified with amino or carbonyl groups. Favorable contributions were noted for terminal heterocyclic rings like pyrimidinyl acetonitrile, whereas phenyl substitutions and certain piperazine configurations were detrimental. Hydrogen in the urea moiety and avoiding bulky substitutions were crucial for activity. These insights guide the design of potent JNK3 inhibitors.</p><p><strong>Conclusion: </strong>The present study highlights the significant impact of substituents on molecular activity, with steric effects, particularly on the phenyl ring, playing a dominant role. Favorable contributions are linked to substitutions like hydroxyl, methoxy, and fluorine, while bulky and meta substitutions reduce activity. Functional groups like unsubstituted sulfonamide or free hydrogen in urea are crucial for activity. Insights into steric, electronic, and positional factors, combined with analysis of JNK3 inhibitors, will guide the design of more selective molecules.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative Analysis of the Impact of Prenatal Depression on the Newborn Intestinal Microbiota.
Central nervous system agents in medicinal chemistry Pub Date : 2025-02-26 DOI: 10.2174/0118715249361952250209084153
Wafaa Taha, Oumaima Anachad, Amine Taouil, Chaimaa Saadoune, Mariame El Messal, Faiza Bennis, Fatima Chegdani
{"title":"Integrative Analysis of the Impact of Prenatal Depression on the Newborn Intestinal Microbiota.","authors":"Wafaa Taha, Oumaima Anachad, Amine Taouil, Chaimaa Saadoune, Mariame El Messal, Faiza Bennis, Fatima Chegdani","doi":"10.2174/0118715249361952250209084153","DOIUrl":"https://doi.org/10.2174/0118715249361952250209084153","url":null,"abstract":"<p><strong>Background: </strong>More than 15% of women develop symptoms of depression during pregnancy, which often affects the mental and physical development of the newborn by altering its intestinal microbiota. Previous studies revealed that the gut microbiota plays a crucial role in the maturation of systems involved in the gut-brain axis, including the gastrointestinal system, the immune system, and the hypothalamic-pituitary-adrenal system axis.</p><p><strong>Methods: </strong>This study aims to explore the cross-talk between the prenatal depression process and neonatal intestinal microbiota diversity. A total of 100 differentially expressed genes (DEGs) associated with prenatal depression were collected from various scientific publications and databases. Bioinformatics tools were used to analyze these DEGs. The STRING database. ToppGene database and DICE were employed for this integrative analysis.</p><p><strong>Results: </strong>The network generated by the STRING database identified six pivotal genes: TNF, BDNF, IL-6, NR3C1, IGF2, and POMC. These genes regulate response to endogenous hormones, particularly cortisol secretion in newborns, as well as inhibiting serotonin secretion. Moreover, these genes are linked to major depressive disorder and other mental diseases, contributing to maternal and neonatal gut microbiota dysbiosis. Analysis using ToppGene and DICE's further validated the biological processes identified by String, including the regulation of cellular cortisol secretion, metabolic processes, and serotonin inhibition.</p><p><strong>Conclusion: </strong>The bioinformatics tools employed in this study allowed us to identify pivotal genes involved in prenatal depression, their associated signaling pathways, and their roles in modulating maternal and neonatal gut microbiota.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation, Development and Evaluation of Effervescent Tablet of Green Tea (Camellia sinensis).
Central nervous system agents in medicinal chemistry Pub Date : 2025-02-06 DOI: 10.2174/0118715249333134250116112001
Prabhjot Kaur, Geeta Deswal, Bhawna Chopra, Priyanka Kriplani, Ajmer Singh Grewal, Ashwani K Dhingra
{"title":"Formulation, Development and Evaluation of Effervescent Tablet of Green Tea (Camellia sinensis).","authors":"Prabhjot Kaur, Geeta Deswal, Bhawna Chopra, Priyanka Kriplani, Ajmer Singh Grewal, Ashwani K Dhingra","doi":"10.2174/0118715249333134250116112001","DOIUrl":"https://doi.org/10.2174/0118715249333134250116112001","url":null,"abstract":"<p><strong>Background: </strong>Camellia sinensis has an extensive variety of pharmacological properties, including neuroprotection, photo-aging resistance, stress resistance, antioxidant, anti-tumour, hypoglycemic, antibacterial, and antiviral effects tracing a good potential in addressing illness and preventing disease. Challenges with conventional dosage forms include patient incompatibility, improper dosing, the inclusion of microplastics, etc. Objective: The present work aims to deliver a novel formulation devoid of microplastics and with improved consumer compliance.</p><p><strong>Methods: </strong>Wet granulation was used to formulate 500 mg Camellia sinensis effervescent tablets, with improved effervescent time and rapid release. Citric acid and sodium bicarbonate's impacts on disintegration time and pH were examined using a factorial design. Pre-compression variables were assessed for the granule mixture. Post-compression criteria were employed to assess effervescent tablets. The optimum formulation was selected using a central composite response surface and assessment criteria.</p><p><strong>Results: </strong>The physicochemical characteristics of the developed formulations were significantly influenced by the independent factors. Low concentrations of sodium bicarbonate have positive impact on pH whereas high concentrations of sodium bicarbonate as well as citric acid enhance disintegration time. The design outcomes showed that the optimized effervescent tablets (F10) prepared with 697.5 mg and 448.38 mg of citric acid and sodium bicarbonate respectively had good physicochemical properties.</p><p><strong>Conclusion: </strong>In compliance with present quality standards, factorial design was efficiently utilized for the development of Camellia sinensis effervescent tablets. It was concluded that green tea effervescent tablet (F10) would function as a substitute for conventional green tea powder along with green tea bags as a means of administration.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Safety and Efficacy of Cuprum metallicum in Zebrafish and Mouse Models as a Potential Drug Candidate for the Management of Seizures.
Central nervous system agents in medicinal chemistry Pub Date : 2025-02-06 DOI: 10.2174/0118715249345785250114222749
Mahima Sharma, Vara Prasad Saka, Godlaveti Vijay Narasimha Kumar, Sangita Behera, Rajkumar Regar, Pankaj Gupta, Ritika H Narula
{"title":"Evaluation of Safety and Efficacy of Cuprum metallicum in Zebrafish and Mouse Models as a Potential Drug Candidate for the Management of Seizures.","authors":"Mahima Sharma, Vara Prasad Saka, Godlaveti Vijay Narasimha Kumar, Sangita Behera, Rajkumar Regar, Pankaj Gupta, Ritika H Narula","doi":"10.2174/0118715249345785250114222749","DOIUrl":"https://doi.org/10.2174/0118715249345785250114222749","url":null,"abstract":"<p><strong>Background: </strong>In an alternative medicinal system, Cuprum metallicum (CM) is used for the management of seizure-like conditions. However, there is a lack of scientific evidence regarding its effect.</p><p><strong>Objective: </strong>The present study aimed to evaluate the effect of CM against Pentylenetetrazoleinduced seizures in zebrafish and mice.</p><p><strong>Methods: </strong>Zebrafish were exposed to CM-6C, CM-30C, and valproic acid for 1 Hr then fish were exposed to pentylenetetrazole to record seizure score and locomotor pattern using ANY maze video tracking software. Mice were pretreated with CM-6C, CM-30C, and valproic acid for 10 days. After 30 min of the last dose, pentylenetetrazole was administered intraperitoneally. Observations during the next 30 min were recorded to detect latency to first myoclonic jerk (FMJ), tonic-clonic seizures, and the severity of seizure and survival protection after 24 Hrs.</p><p><strong>Results: </strong>PTZ exposure significantly decreased the latency from score-1 to score-5, which CM-6C and 30C significantly increased. Furthermore, CM-6C and 30C normalized the locomotor activity affected by PTZ exposure. Among the animals treated with the CM-6C and 30C, significantly increased latency to FMJ, tonic-clonic seizures, and survival protection compared to the PTZ group of Cuprum met.</p><p><strong>Conclusion: </strong>The results of the study indicate that CM 6C and 30C have the potential to work against seizures as they attenuated the PTZ-induced seizures in Zebrafish and BALB/c mice. It could be presumed that CM-6C and 30C could be a beneficial alternative drug candidate for the treatment of epilepsy.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimethyl Fumarate Attenuates Behavioral and Structural Impairments Associated with Brain Ischemia in Rats.
Central nervous system agents in medicinal chemistry Pub Date : 2025-01-31 DOI: 10.2174/0118715249345683250116080547
Mohammad Bakhtiari, Masoumeh Emamghoreishi, Maryam Khastkhodaei Ardakani, Mohammad Reza Namavar
{"title":"Dimethyl Fumarate Attenuates Behavioral and Structural Impairments Associated with Brain Ischemia in Rats.","authors":"Mohammad Bakhtiari, Masoumeh Emamghoreishi, Maryam Khastkhodaei Ardakani, Mohammad Reza Namavar","doi":"10.2174/0118715249345683250116080547","DOIUrl":"https://doi.org/10.2174/0118715249345683250116080547","url":null,"abstract":"<p><strong>Introduction: </strong>Ischemic stroke remains one of the leading causes of death and physical and mental disability. Oxidative stress, free radicals, and inflammation play critical roles in ischemic brain damage. Free radical scavengers such as edaravone and dimethyl fumarate (DMF), known for their antioxidant and anti-inflammatory properties, are considered promising targets for ischemic stroke treatment. This study aimed to assess the impact of these drugs on brain ischemia.</p><p><strong>Methods: </strong>Forty-nine rats were randomly divided into seven groups: sham, edaravone, and DMF controls, as well as edaravone, DMF 5, 15, and 30 groups. Middle cerebral artery occlusion (MCAO) was induced in all groups except the sham group. The MCAO groups were administered with either the vehicle, edaravone (3 mg/kg), or DMF at doses of 5, 15, and 30 mg/kg twice daily for 14 days. Neurobehavioral assessments were conducted throughout the experiment, and anatomical changes in the brain were evaluated using stereological methods.</p><p><strong>Results: </strong>Edaravone and three doses of DMF improved neurobehavioral functions. All treated rats showed a reduction in the ischemic volume and cell loss in the brain regions when compared with the control animals. MCAO reduced the total number of neurons and just DMF doses had a significant effect on this factor. Interestingly, MCAO increased the number of non-neurons and only the DMF 30 group significantly decreased this parameter. DMF 30 was more effective in ischemic stroke.</p><p><strong>Conclusions: </strong>Although edaravone improved neurological functions and reduced the size of brain ischemia and cell loss, DMF, especially at higher doses, exerted a more beneficial effect on these parameters. Therefore, DMF could be proposed as a reinforcement to currently conventional therapies.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143124227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redirecting Research to Alzheimer's Disease.
Central nervous system agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/187152492501241014100836
Ramón Cacabelos
{"title":"Redirecting Research to Alzheimer's Disease.","authors":"Ramón Cacabelos","doi":"10.2174/187152492501241014100836","DOIUrl":"https://doi.org/10.2174/187152492501241014100836","url":null,"abstract":"","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":"25 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-site APP-cleaving Enzyme-1 Inhibitory Role of Natural Flavonoids in the Treatment of Alzheimer's Disease. 天然黄酮类化合物在治疗阿尔茨海默病中的β-位点 APP 分解酶-1 抑制作用
Central nervous system agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0118715249315049240710063455
Sandeep Singh, Virendra Kushwaha, Shriram Sisodia, Shivendra Kumar, Kantrol Kumar Sahu
{"title":"Beta-site APP-cleaving Enzyme-1 Inhibitory Role of Natural Flavonoids in the Treatment of Alzheimer's Disease.","authors":"Sandeep Singh, Virendra Kushwaha, Shriram Sisodia, Shivendra Kumar, Kantrol Kumar Sahu","doi":"10.2174/0118715249315049240710063455","DOIUrl":"10.2174/0118715249315049240710063455","url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is a devastating neurological condition characterized by a progressive decline in cognitive function, including memory loss, reasoning difficulties, and disorientation. Its hallmark features include the formation of neurofibrillary tangles and neuritic plaques in the brain, disrupting normal neuronal function. Neurofibrillary tangles, composed of phosphorylated tau protein and neuritic plaques, containing amyloid-β protein (Aβ) aggregates, contribute to the degenerative process. The discovery of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) in 1999 revolutionized our understanding of AD pathogenesis. BACE1 plays a crucial role in the production of Aβ, the toxic protein implicated in AD progression. Elevated levels of BACE1 have been observed in AD brains and bodily fluids, underscoring its significance in disease onset and progression. Despite setbacks in clinical trials of BACE1 inhibitors due to efficacy and safety concerns, targeting BACE1 remains a promising therapeutic strategy for early-stage AD. Natural flavonoids have emerged as potential BACE1 inhibitors, demonstrating the ability to reduce Aβ production in neuronal cells and inhibit BACE1 activity. In our review, we delve into the pathophysiology of AD, highlighting the central role of BACE1 in Aβ production and disease progression. We explore the therapeutic potential of BACE1 inhibitors, including natural flavonoids, in controlling AD symptoms. Additionally, we provide insights into ongoing clinical trials and available patents in this field, shedding light on future directions for AD treatment research.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":"39-48"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury. 纳米技术在了解创伤性脑损伤病理生理学方面的作用。
Central nervous system agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0118715249291999240418112531
Saranya Selvaraj, Laksiri Weerasinghe
{"title":"The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury.","authors":"Saranya Selvaraj, Laksiri Weerasinghe","doi":"10.2174/0118715249291999240418112531","DOIUrl":"10.2174/0118715249291999240418112531","url":null,"abstract":"<p><p>Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":"20-38"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of the Association between Infections, Seizures, and Drugs. 感染、癫痫发作和药物之间的关联回顾。
Central nervous system agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0118715249288932240416071636
Zahra Tolou-Ghamari
{"title":"A Review of the Association between Infections, Seizures, and Drugs.","authors":"Zahra Tolou-Ghamari","doi":"10.2174/0118715249288932240416071636","DOIUrl":"10.2174/0118715249288932240416071636","url":null,"abstract":"<p><strong>Background: </strong>Seizures are a common presenting symptom of the central nervous system (CNS) and could occur from infections (such as toxins) or drugs.</p><p><strong>Objective: </strong>The aim of this study was to present a systematic review of the association between infections, seizures, and drugs.</p><p><strong>Methods: </strong>From their inception to 18 February 2024 relevant in-depth consequent guide approach and the evidence-based choice were selected associated with a knowledgeable collection of current, high-quality manuscripts.</p><p><strong>Results: </strong>Imbalance between inhibitory and excitatory neurotransmitters due to infections, drugs such as ticarcillin, amoxicillin, oxacillin, penicillin G, ampicillin, tramadol, venlafaxine, cyclosporine, tacrolimus, acyclovir, cellcept, the old generation of antiepileptic drugs, such as carbamazepine, phenytoin, and many other drugs could cause different stages of CNS disturbances ranging from seizure to encephalopathy. Infections could cause life-threatening status epilepticus by continuous unremitting seizures lasting longer than 5 minutes or recurrent seizures. Meningitis, tuberculosis, herpes simplex, cerebral toxoplasmosis, and many others could lead to status epilepticus. In fact, confusion, encephalopathy, and myoclonus were reported with drugs, such as ticarcillin, amoxicillin, oxacillin, penicillin G, ampicillin, and others. Penicillin G was reported as having the greatest epileptogenic potential. A high dose, in addition to prolonged use of metronidazole, was reported with seizure infection. Meropenem could decrease the concentration of valproic acid. Due to the inhibition of cytochrome P450 3A4, the combination of clarithromycin and erythromycin with carbamazepine needs vigilant monitoring.</p><p><strong>Conclusion: </strong>Due to changes in drug metabolism, co-administration of antiseizure drugs and antibiotics may lead to an enhanced risk of seizures. In patients with neurocysticercosis, cerebral malaria, viral encephalitis, bacterial meningitis, tuberculosis, and human immunodeficiency virus, the evidence-based study recommended different mechanisms mediating epileptogenic properties of toxins and drugs.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":"49-55"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信