{"title":"Visualising Neutrophil Actin Dynamics in Zebrafish in Response to Laser Wounding Using Two-Photon Microscopy.","authors":"Ivanna Williantarra, Antonios Georgantzoglou, Milka Sarris","doi":"10.21769/BioProtoc.4997","DOIUrl":"10.21769/BioProtoc.4997","url":null,"abstract":"<p><p>Cells need to migrate along gradients of chemicals (chemotaxis) in the course of development, wound healing, or immune responses. Neutrophils are prototypical migratory cells that are rapidly recruited to injured or infected tissues from the bloodstream. Their chemotaxis to these inflammatory sites involves changes in cytoskeletal dynamics in response to gradients of chemicals produced therein. Neutrophil chemotaxis has been largely studied in vitro; few assays have been developed to monitor gradient responses in complex living tissues. Here, we describe a laser-wound assay to generate focal injury in zebrafish larvae and monitor changes in behaviour and cytoskeletal dynamics. The first step is to cross adult fish and collect and rear embryos expressing a relevant fluorescent reporter (for example, Lifeact-mRuby, which labels dynamic actin) to an early larval stage. Subsequently, larvae are mounted and prepared for live imaging and wounding under a two-photon microscope. Finally, the resulting data are processed and used for cell segmentation and quantification of actin dynamics. Altogether, this assay allows the visualisation of cellular dynamics in response to acute injury at high resolution and can be combined with other manipulations, such as genetic or chemical perturbations. Key features • This protocol is designed to trigger laser wound in zebrafish larvae using two-photon intravital microscopy. • The ability to wound while imaging makes it possible to monitor the behaviour and actin changes of the cells immediately after gradient exposure. • The protocol requires a two-photon microscope for best results. Compared with one-photon laser wounding, the injury is more precise and has better tissue penetration. • The focal nature of the wounds is suitable for studies of neutrophil swarming/aggregation and can be further adapted to infectious settings.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2024-06-05DOI: 10.21769/BioProtoc.4998
Jun Lyu, Chongyi Chen
{"title":"Linearly Amplified Single-Stranded RNA-Derived Transcriptome Sequencing (LAST-seq).","authors":"Jun Lyu, Chongyi Chen","doi":"10.21769/BioProtoc.4998","DOIUrl":"10.21769/BioProtoc.4998","url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) stands as a cutting-edge technology widely used in biological and biomedical research. Existing scRNA-seq methods rely on reverse transcription (RT) and second-strand synthesis (SSS) to convert RNA to cDNA before amplification. However, these methods often suffer from limited RT/SSS efficiency, which compromises the sensitivity of RNA detection. Here, we develop a new method, linearly amplified single-stranded RNA-derived transcriptome sequencing (LAST-seq), which directly amplifies the original single-stranded RNA without prior RT and SSS and offers high-sensitivity RNA detection and a low level of technical noise in single-cell transcriptome analysis. LAST-seq has been applied to quantify transcriptional bursting kinetics in human cells, advancing our understanding of chromatin organization's role in regulating gene expression. Key features • An RNase H/DNA polymerase-based strategy to attach the T7 promoter to single-stranded RNA. • T7 promoter mediated IVT on single stranded RNA template at single cell level.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A New Approach for Assessment of Neutrophil Extracellular Traps Through Immunofluorescence Staining in Whole Blood Smears.","authors":"Sakshi Bansal, Vinit Sharma, Rajesh Gupta, Harjeet Singh, Anjali Aggarwal","doi":"10.21769/BioProtoc.5010","DOIUrl":"10.21769/BioProtoc.5010","url":null,"abstract":"<p><p>Neutrophils, constituting 50%-70% of circulating leukocytes, play crucial roles in host defense and exhibit anti-tumorigenic properties. An elevated peripheral blood neutrophil-to-lymphocyte ratio is associated with decreased survival rates in cancer patients. In response to exposure to various antigens, neutrophils release neutrophil granular proteins, which combine to form web-like structures known as neutrophil extracellular traps (NETs). Previously, the relative percentage of NETs was found to be increased in resected tumor tissue samples from patients with gastrointestinal malignancies. The presence of NETs in peripheral blood is indicative of underlying pathological conditions. Hence, employing a non-invasive method to detect NETs in peripheral blood, along with other diagnostic tests, shows potential as a valuable tool not just for identifying different inflammatory disorders but also for assessing disease severity and determining patient suitability for surgical resection. While reliable methods exist for identifying NETs in tissue, accurately quantifying them in whole blood remains challenging. Many previous methods are time-consuming and rely on a limited set of markers that are inadequate for fully characterizing NETs. Therefore, we established a unique sensitive smear immunofluorescence assay based on blood smears to identify NETs in only as little as 2 μL of whole blood. To identify the NET complexes that have enhanced specificities, this combines the use of various antibodies against neutrophil-specific CD15, NET-specific myeloperoxidase (MPO), citrullinated histone H3 (Cit H3), and nuclear DNA. This protocol offers an easy, affordable, rapid, and non-invasive method for identifying NETs; thus, it can be utilized as a diagnostic marker and targeted through various therapeutic approaches for treating human malignancies. Key features • Characterization of neutrophil extracellular traps in whole blood smears through immunofluorescence staining. • Affordable and quantitative approach to neutrophil extracellular trap detection.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2024-06-05DOI: 10.21769/BioProtoc.4996
Richa Singh, Neil D Sanscrainte, Alden S Estep, K González, Ximena E Bernal
{"title":"Rearing and Shipping of <i>Uranotaenia lowii</i>, a Frog-Biting Mosquito.","authors":"Richa Singh, Neil D Sanscrainte, Alden S Estep, K González, Ximena E Bernal","doi":"10.21769/BioProtoc.4996","DOIUrl":"10.21769/BioProtoc.4996","url":null,"abstract":"<p><p>Many studies on mosquito biology rely on laboratory-reared colonies, emphasizing the need for standardized protocols to investigate critical aspects such as disease biology, mosquito behavior, and vector control methods. While much knowledge is derived from anthropophilic species from genera like <i>Anopheles, Aedes</i>, and <i>Culex</i>, there is a growing interest in studying mosquitoes that feed on non-human hosts. This interest stems from the desire to gain a deeper understanding of the evolution of diverse host range use and host specificity. However, there is currently a limited number of comprehensive protocols for studying such species. Considering this gap, we present a protocol for rearing <i>Uranotaenia lowii</i>, a mosquito species specialized in feeding on anuran amphibians by eavesdropping on host-emitted sound cues. Additionally, we provide instructions for successfully shipping live specimens to promote research on this species and similar ones. This protocol helps fill the current gap in comprehensive guidelines for rearing and maintaining colonies of anuran host-biting mosquitoes. It serves as a valuable resource for researchers seeking to establish colonies of mosquito species from the Uranotaeniini tribe. Ultimately, this protocol may facilitate research on the evolutionary ecology of Culicidae, as this family has recently been proposed to have originated from a frog-feeding ancestor. Key features • Rearing and maintenance of colonies of non-human host-biting mosquitoes that feed on frogs using host-emitted acoustic cues. • Provides shipping guidelines aimed to enhance the establishment of colonies by new research groups and specimen exchanges between labs.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2024-05-20DOI: 10.21769/BioProtoc.4993
Balamurugan Ramatchandirin, Marie Amalie Balamurugan, Suneetha Desiraju, Yerin Chung, K. Mohankumar
{"title":"A Detailed Protocol for the Induction of Anemia and RBC Transfusion–associated Necrotizing Enterocolitis in Neonatal Mice","authors":"Balamurugan Ramatchandirin, Marie Amalie Balamurugan, Suneetha Desiraju, Yerin Chung, K. Mohankumar","doi":"10.21769/BioProtoc.4993","DOIUrl":"https://doi.org/10.21769/BioProtoc.4993","url":null,"abstract":"Anemia is a common and serious health problem, nearly universally diagnosed in preterm infants, and is associated with increased morbidity and mortality worldwide. Red blood cell (RBC) transfusion is a lifesaving and mainstay therapy; however, it has critical adverse effects. One consequence is necrotizing enterocolitis (NEC), an inflammatory bowel necrosis disease in preterm infants. The murine model of phlebotomy-induced anemia and RBC transfusion–associated NEC enables a detailed study of the molecular mechanisms underlying these morbidities and the evaluation of potential new therapeutic strategies. This protocol describes a detailed procedure for obtaining murine pups with phlebotomy-induced anemia and delivering an RBC transfusion that develops NEC.","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optogenetic Interrogation of Electrophysiological Dendritic Properties and Their Effect on Pacemaking Neurons from Acute Rodent Brain Slices","authors":"Naomi Gilin, Nadine Wattad, Lior Tiroshi, Joshua Goldberg","doi":"10.21769/BioProtoc.4992","DOIUrl":"https://doi.org/10.21769/BioProtoc.4992","url":null,"abstract":"Understanding dendritic excitability is essential for a complete and precise characterization of neurons’ input-output relationships. Theoretical and experimental work demonstrates that the electrotonic and nonlinear properties of dendrites can alter the amplitude (e.g., through amplification) and latency of synaptic inputs as viewed in the axosomatic region where spike timing is determined. The gold-standard technique to study dendritic excitability is using dual-patch recordings with a high-resistance electrode used to patch a piece of distal dendrite in addition to a somatic patch electrode. However, this approach is often impractical when distal dendrites are too fine to patch. Therefore, we developed a technique that utilizes the expression of Channelrhodopsin-2 (ChR2) to study dendritic excitability in acute brain slices through the combination of a somatic patch electrode and optogenetic activation. The protocol describes how to prepare acute slices from mice that express ChR2 in specific cell types, and how to use two modes of light stimulation: proximal (which activates the soma and proximal dendrites in a ~100 µm diameter surrounding the soma) with the use of a high-magnification objective and full-field stimulation through a low-magnification objective (which activates the entire somato-dendritic field of the neuron). We use this technique in conjunction with various stimulation protocols to estimate model-based spectral components of dendritic filtering and the impact of dendrites on phase response curves, peri-stimulus time histograms, and entrainment of pacemaking neurons. This technique provides a novel use of optogenetics to study intrinsic dendritic excitability through the use of standard patch-clamp slice physiology. Key features • A method for studying the effects of electrotonic and nonlinear dendritic properties on the sub- and suprathreshold responses of pacemaking neurons. • Combines somatic patch clamp or perforated patch recordings with optogenetic activation in acute brain slices to investigate dendritic linear transformation without patching the dendrite. • Oscillatory illumination at various frequencies estimates spectral properties of the dendrite using subthreshold voltage-clamp recordings and studies entrainment of pacemakers in current clamp recordings. • This protocol uses Poisson white noise illumination to estimate dendritic phase response curves and peri-stimulus time histograms.","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2024-05-20DOI: 10.21769/BioProtoc.4987
Satyam Vergish, Ryan Wolf, Wen-Yuan Song
{"title":"Simplified Protocol to Demonstrate Gene Expression in Nicotiana benthamiana Using an Agrobacterium-Mediated Transient Assay","authors":"Satyam Vergish, Ryan Wolf, Wen-Yuan Song","doi":"10.21769/BioProtoc.4987","DOIUrl":"https://doi.org/10.21769/BioProtoc.4987","url":null,"abstract":"Agrobacterium-mediated transient gene expression in Nicotiana benthamiana is widely used to study gene function in plants. One dramatic phenotype that is frequently screened for is cell death. Here, we present a simplified protocol for Agrobacterium-mediated transient gene expression by infiltration. Compared with current methods, the novel protocol can be done without a centrifuge or spectrometer, thereby suitable for K-12 outreach programs as well as rapidly identifying genes that induce cell death. Key features • The protocol simplifies the widely used Agrobacterium-mediated transient gene expression assay [1] and can be completed within one week when plants are available. • Rice XB3 gene can induce a dramatic and easily identifiable cell death phenotype in Nicotiana benthamiana. • Allows identification of cell death–inducing genes and is suitable for teaching. • Compared to the currently used methods, our protocol omits the use of agroinfiltration buffer, pH meter, temperature-controlled growth chamber, centrifuge, and spectrophotometer. Graphical overview Agrobacterium infiltration (agroinfiltration) of Nicotiana benthamiana. The photo demonstrates the method of agroinfiltration into the abaxial side of leaves using a needleless syringe.","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2024-05-20DOI: 10.21769/BioProtoc.4988
Anam Hammid
{"title":"A Standardized Protocol for Extraction and Homogenization of Ocular Tissues.","authors":"Anam Hammid","doi":"10.21769/BioProtoc.4988","DOIUrl":"10.21769/BioProtoc.4988","url":null,"abstract":"<p><p>The eye is a complex organ composed of multiple tissues in anterior and posterior eye segments. Malfunctions of any of these tissues can lead to ocular diseases and loss of vision. A detailed understanding of the ocular anatomy and physiology in animal models and humans contributes to the development of ocular drugs by enabling studies on drug delivery and clearance routes, pharmacokinetics, and toxicity. This protocol provides step-by-step instructions for the extraction and homogenization of ocular tissues for enzymatic and proteomics analyses. Key features • Suitable protocol for the extraction and isolation of ocular tissue from humans and laboratory animals (rabbit, pig, rat, mouse) while minimizing cross-contamination. • Hard or soft tissue homogenates can be prepared efficiently using a Bead Ruptor homogenizer. • Allows to determine the protein contents in prepared homogenates.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2024-05-20DOI: 10.21769/BioProtoc.4989
Raymond Zhang, Julien Vermot, Riccardo Gherardi, Hajime Fukui, Renee Chow
{"title":"Calcium Signal Analysis in the Zebrafish Heart via Phase Matching of the Cardiac Cycle","authors":"Raymond Zhang, Julien Vermot, Riccardo Gherardi, Hajime Fukui, Renee Chow","doi":"10.21769/BioProtoc.4989","DOIUrl":"https://doi.org/10.21769/BioProtoc.4989","url":null,"abstract":"Calcium signalling in the endocardium is critical for heart valve development. Calcium ion pulses in the endocardium are generated in response to mechanical forces due to blood flow and can be visualised in the beating zebrafish heart using a genetically encoded calcium indicator such as GCaMP7a. Analysing these pulses is challenging because of the rapid movement of the heart during heartbeat. This protocol outlines an imaging analysis method used to phase-match the cardiac cycle in single z-slice movies of the beating heart, allowing easy measurement of the calcium signal. Key features • Software to synchronise and analyse frames from movies of the beating heart corresponding to a user-defined phase of the cardiac cycle. • Software to measure the fluorescence intensity of the beating heart corresponding to a user-defined region of interest.","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2024-05-20DOI: 10.21769/BioProtoc.4994
R. J. Mow, Anand Srinivasan, Eunice Bolay, D. Merlin, Chunhua Yang
{"title":"Fluorescent Labeling and Imaging of IL-22 mRNA-Loaded Lipid Nanoparticles","authors":"R. J. Mow, Anand Srinivasan, Eunice Bolay, D. Merlin, Chunhua Yang","doi":"10.21769/BioProtoc.4994","DOIUrl":"https://doi.org/10.21769/BioProtoc.4994","url":null,"abstract":"Lipid nanoparticle (LNP)-based drug delivery systems (DDSs) are widely recognized for their ability to enhance efficient and precise delivery of therapeutic agents, including nucleic acids like DNA and mRNA. Despite this acknowledgment, there is a notable knowledge gap regarding the systemic biodistribution and organ accumulation of these nanoparticles. The ability to track LNPs in vivo is crucial for understanding their fate within biological systems. Fluorescent labeling of LNPs facilitates real-time tracking, quantification, and visualization of their behavior within biological systems, providing valuable insights into biodistribution, cellular uptake, and the optimization of drug delivery strategies. Our prior research established reversely engineered LNPs as an exceptional mRNA delivery platform for treating ulcerative colitis. This study presents a detailed protocol for labeling interleukin-22 (IL-22) mRNA-loaded LNPs, their oral administration to mice, and visualization of DiR-labeled LNPs biodistribution in the gastrointestinal tract using IVIS spectrum. This fluorescence-based approach will assist researchers in gaining a dynamic understanding of nanoparticle fate in other models of interest. Key features • This protocol is developed to assess the delivery of IL-22 mRNA to ulcerative colitis sites using lipid nanoparticles. • This protocol uses fluorescent DiR dye for imaging of IL-22 mRNA-loaded lipid nanoparticles in the gastrointestinal tract of mice. • This protocol employs the IVIS spectrum for imaging.","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}