利用体外渗透梯度实验系统评价拟南芥初生根生长对渗透胁迫的响应。

IF 1.1 Q3 BIOLOGY
Selene Píriz-Pezzutto, Mauro Martínez-Moré, Maria Martha Sainz, Omar Borsani, Mariana Sotelo-Silveira
{"title":"利用体外渗透梯度实验系统评价拟南芥初生根生长对渗透胁迫的响应。","authors":"Selene Píriz-Pezzutto, Mauro Martínez-Moré, Maria Martha Sainz, Omar Borsani, Mariana Sotelo-Silveira","doi":"10.21769/BioProtoc.5397","DOIUrl":null,"url":null,"abstract":"<p><p>The root meristem navigates the highly variable soil environment where water availability limits water absorption, slowing or halting growth. Traditional studies use uniform high osmotic potentials, poorly representing natural conditions where roots gradually encounter increasing osmotic potentials. Uniform high osmotic potentials reduce root growth by inhibiting cell division and shortening mature cell length. This protocol describes a simple and effective in vitro system using a gradient mixer that generates a vertical gradient in an agar gel based on the principle of communicating vessels, exploiting gravity to generate a continuous mannitol concentration gradient (from 0 to 400 mM mannitol) reaching osmotic potentials of -1,2 MPa. It enables long-term <i>Arabidopsis</i> root growth analysis under progressive water deficit, improving phenotyping and molecular studies in soil-like conditions. Key features • Novel approach: Unique method to evaluate primary root growth in <i>Arabidopsis</i> under increasing osmotic potentials. • Osmotic gradient system: Simulating a gradual osmotic gradient in the root growth zone while maintaining aerial tissues under control conditions. • Sustained growth: <i>Arabidopsis</i> Col-0 and <i>ttl1</i> mutant seedlings maintain proper root growth for 25 days, even at osmotic potentials as low as -1.2 MPa. • Enhanced growth rates: Roots grown in the osmotic gradient exhibit higher growth rates than those in homogeneous high osmotic potential conditions. • Phenotypic observation: <i>ttl1</i> seedlings grown in the osmotic gradient do not show the typical swelling phenotype observed at extreme osmotic potentials (-1.2 MPa).</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 14","pages":"e5397"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304458/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating <i>Arabidopsis</i> Primary Root Growth in Response to Osmotic Stress Using an In Vitro Osmotic Gradient Experimental System.\",\"authors\":\"Selene Píriz-Pezzutto, Mauro Martínez-Moré, Maria Martha Sainz, Omar Borsani, Mariana Sotelo-Silveira\",\"doi\":\"10.21769/BioProtoc.5397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The root meristem navigates the highly variable soil environment where water availability limits water absorption, slowing or halting growth. Traditional studies use uniform high osmotic potentials, poorly representing natural conditions where roots gradually encounter increasing osmotic potentials. Uniform high osmotic potentials reduce root growth by inhibiting cell division and shortening mature cell length. This protocol describes a simple and effective in vitro system using a gradient mixer that generates a vertical gradient in an agar gel based on the principle of communicating vessels, exploiting gravity to generate a continuous mannitol concentration gradient (from 0 to 400 mM mannitol) reaching osmotic potentials of -1,2 MPa. It enables long-term <i>Arabidopsis</i> root growth analysis under progressive water deficit, improving phenotyping and molecular studies in soil-like conditions. Key features • Novel approach: Unique method to evaluate primary root growth in <i>Arabidopsis</i> under increasing osmotic potentials. • Osmotic gradient system: Simulating a gradual osmotic gradient in the root growth zone while maintaining aerial tissues under control conditions. • Sustained growth: <i>Arabidopsis</i> Col-0 and <i>ttl1</i> mutant seedlings maintain proper root growth for 25 days, even at osmotic potentials as low as -1.2 MPa. • Enhanced growth rates: Roots grown in the osmotic gradient exhibit higher growth rates than those in homogeneous high osmotic potential conditions. • Phenotypic observation: <i>ttl1</i> seedlings grown in the osmotic gradient do not show the typical swelling phenotype observed at extreme osmotic potentials (-1.2 MPa).</p>\",\"PeriodicalId\":93907,\"journal\":{\"name\":\"Bio-protocol\",\"volume\":\"15 14\",\"pages\":\"e5397\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-protocol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21769/BioProtoc.5397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根分生组织在高度变化的土壤环境中导航,在土壤环境中,水分的可用性限制了水分的吸收,减缓或停止了生长。传统的研究使用均匀的高渗透势,不能很好地代表根逐渐遇到高渗透势的自然条件。均匀的高渗透电位通过抑制细胞分裂和缩短成熟细胞长度来减少根的生长。本方案描述了一个简单而有效的体外系统,使用梯度混合器在琼脂凝胶中产生垂直梯度,基于通信血管的原理,利用重力产生连续的甘露醇浓度梯度(从0到400mm甘露醇),达到-1,2 MPa的渗透电位。它使拟南芥在进行性水分亏缺条件下的长期根系生长分析成为可能,改善了类土壤条件下的表型和分子研究。•新方法:独特的方法来评估增加渗透电位下拟南芥初生根的生长。•渗透梯度系统:在控制条件下维持地面组织的同时,模拟根生长期的逐渐渗透梯度。•持续生长:即使渗透电位低至-1.2 MPa,拟南芥col0和ttl1突变体幼苗也能保持25天的正常根系生长。•提高生长速度:生长在渗透梯度中的根比生长在均匀高渗透势条件下的根表现出更高的生长速度。•表型观察:在渗透梯度下生长的ttl1幼苗没有表现出在极端渗透电位(-1.2 MPa)下观察到的典型肿胀表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Arabidopsis Primary Root Growth in Response to Osmotic Stress Using an In Vitro Osmotic Gradient Experimental System.

The root meristem navigates the highly variable soil environment where water availability limits water absorption, slowing or halting growth. Traditional studies use uniform high osmotic potentials, poorly representing natural conditions where roots gradually encounter increasing osmotic potentials. Uniform high osmotic potentials reduce root growth by inhibiting cell division and shortening mature cell length. This protocol describes a simple and effective in vitro system using a gradient mixer that generates a vertical gradient in an agar gel based on the principle of communicating vessels, exploiting gravity to generate a continuous mannitol concentration gradient (from 0 to 400 mM mannitol) reaching osmotic potentials of -1,2 MPa. It enables long-term Arabidopsis root growth analysis under progressive water deficit, improving phenotyping and molecular studies in soil-like conditions. Key features • Novel approach: Unique method to evaluate primary root growth in Arabidopsis under increasing osmotic potentials. • Osmotic gradient system: Simulating a gradual osmotic gradient in the root growth zone while maintaining aerial tissues under control conditions. • Sustained growth: Arabidopsis Col-0 and ttl1 mutant seedlings maintain proper root growth for 25 days, even at osmotic potentials as low as -1.2 MPa. • Enhanced growth rates: Roots grown in the osmotic gradient exhibit higher growth rates than those in homogeneous high osmotic potential conditions. • Phenotypic observation: ttl1 seedlings grown in the osmotic gradient do not show the typical swelling phenotype observed at extreme osmotic potentials (-1.2 MPa).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信