Fixation and Expansion Microscopy of Xenopus Egg Extract Spindles.

IF 1.1 Q3 BIOLOGY
Gabriel Guilloux, Maiko Kitaoka, Karel Mocaer, Claire Heichette, Laurence Duchesne, Rebecca Heald, Thierry Pecot, Romain Gibeaux
{"title":"Fixation and Expansion Microscopy of <i>Xenopus</i> Egg Extract Spindles.","authors":"Gabriel Guilloux, Maiko Kitaoka, Karel Mocaer, Claire Heichette, Laurence Duchesne, Rebecca Heald, Thierry Pecot, Romain Gibeaux","doi":"10.21769/BioProtoc.5396","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro systems based on <i>Xenopus</i> egg extracts have elucidated many aspects of spindle assembly. Still, numerous unknowns remain, particularly concerning the variation in spindle morphologies. The <i>X. laevis</i> and <i>X. tropicalis</i> egg extract systems, which recapitulate diverse spindle sizes and architectures, serve as ideal tools to investigate the regulation of spindle morphometrics. However, fully understanding spindle architectural differences is hindered by the spindle's size and high microtubule density. Indeed, classical fluorescence microscopy lacks the resolution to detail the organization of spindle microtubules, and although electron tomography can distinguish individual microtubules, segmenting thousands of microtubules and tracking them across dozens of sections remains an unachieved challenge. Therefore, we set out to apply expansion microscopy to the study of <i>Xenopus</i> egg extract spindles. During this process, we realized that optimizing spindle fixation as well was crucial to preserve microtubule integrity. Here, we present an optimized fixation and expansion microscopy protocol that enables the study of spindle architecture in egg extracts of both <i>X. laevis</i> and <i>X. tropicalis</i>. Our method retains the fluorescence of rhodamine tubulins added to the extracts and allows for both pre- and post-expansion immunofluorescence analysis. Key features • Expansion of optimally fixed spindle assembled from egg extracts of <i>X. leavis, X. tropicalis</i>, and possibly others. • Retains the fluorescence of the rhodamine-tubulin that copolymerizes with endogenous <i>Xenopus</i> tubulin within spindle microtubules, allowing their imaging without immunolabeling. • Compatible with both pre- and post-expansion immunolabeling to increase labeling possibilities. • Optimized spindle fixation that best preserves microtubule integrity for expansion and can also be used without expansion for regular immunofluorescence experiments.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 14","pages":"e5396"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro systems based on Xenopus egg extracts have elucidated many aspects of spindle assembly. Still, numerous unknowns remain, particularly concerning the variation in spindle morphologies. The X. laevis and X. tropicalis egg extract systems, which recapitulate diverse spindle sizes and architectures, serve as ideal tools to investigate the regulation of spindle morphometrics. However, fully understanding spindle architectural differences is hindered by the spindle's size and high microtubule density. Indeed, classical fluorescence microscopy lacks the resolution to detail the organization of spindle microtubules, and although electron tomography can distinguish individual microtubules, segmenting thousands of microtubules and tracking them across dozens of sections remains an unachieved challenge. Therefore, we set out to apply expansion microscopy to the study of Xenopus egg extract spindles. During this process, we realized that optimizing spindle fixation as well was crucial to preserve microtubule integrity. Here, we present an optimized fixation and expansion microscopy protocol that enables the study of spindle architecture in egg extracts of both X. laevis and X. tropicalis. Our method retains the fluorescence of rhodamine tubulins added to the extracts and allows for both pre- and post-expansion immunofluorescence analysis. Key features • Expansion of optimally fixed spindle assembled from egg extracts of X. leavis, X. tropicalis, and possibly others. • Retains the fluorescence of the rhodamine-tubulin that copolymerizes with endogenous Xenopus tubulin within spindle microtubules, allowing their imaging without immunolabeling. • Compatible with both pre- and post-expansion immunolabeling to increase labeling possibilities. • Optimized spindle fixation that best preserves microtubule integrity for expansion and can also be used without expansion for regular immunofluorescence experiments.

Abstract Image

Abstract Image

Abstract Image

爪蟾卵精纺锤体的固定与扩增显微镜。
基于爪蟾卵提取物的体外系统已经阐明了纺锤体组装的许多方面。尽管如此,仍有许多未知因素存在,特别是关于纺锤体形态的变化。猕猴桃和热带猕猴桃卵提取系统具有不同的纺锤体大小和结构,是研究纺锤体形态计量学调控的理想工具。然而,充分了解主轴结构的差异是阻碍主轴的尺寸和高微管密度。事实上,经典的荧光显微镜缺乏详细描述纺锤体微管组织的分辨率,尽管电子断层扫描可以区分单个微管,但分割数千个微管并在数十个切片中跟踪它们仍然是一个未实现的挑战。因此,我们开始将扩展显微镜应用于爪蟾卵提取液纺锤体的研究。在这个过程中,我们意识到优化主轴固定也是保持微管完整性的关键。在这里,我们提出了一种优化的固定和扩展显微镜方案,使研究纺丝结构的X. laevis和X. tropical alis卵提取物。我们的方法保留了添加到提取物中的罗丹明小管的荧光,并允许扩增前和扩增后的免疫荧光分析。•扩展最佳固定纺锭组装从X. leavis, X.热带,和可能的其他鸡蛋提取物。•保留罗丹明-微管蛋白的荧光,与内源性爪蟾微管蛋白共聚在纺锤体微管内,允许其成像而无需免疫标记。•兼容扩展前和扩展后免疫标记,以增加标记的可能性。•优化的纺锤体固定,最好地保留微管的完整性,以扩大,也可以使用不扩大定期免疫荧光实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信