SignalsPub Date : 2023-12-18DOI: 10.3390/signals4040048
Jacopo Piccini, E. August, Sami Leon Noel Aziz Hanna, Tiina Siilak, E. Arnardóttir
{"title":"Automatic Detection of Electrodermal Activity Events during Sleep","authors":"Jacopo Piccini, E. August, Sami Leon Noel Aziz Hanna, Tiina Siilak, E. Arnardóttir","doi":"10.3390/signals4040048","DOIUrl":"https://doi.org/10.3390/signals4040048","url":null,"abstract":"Currently, there is significant interest in developing algorithms for processing electrodermal activity (EDA) signals recorded during sleep. The interest is driven by the growing popularity and increased accuracy of wearable devices capable of recording EDA signals. If properly processed and analysed, they can be used for various purposes, such as identifying sleep stages and sleep-disordered breathing, while being minimally intrusive. Due to the tedious nature of manually scoring EDA sleep signals, the development of an algorithm to automate scoring is necessary. In this paper, we present a novel scoring algorithm for the detection of EDA events and EDA storms using signal processing techniques. We apply the algorithm to EDA recordings from two different and unrelated studies that have also been manually scored and evaluate its performances in terms of precision, recall, and F1 score. We obtain F1 scores of about 69% for EDA events and of about 56% for EDA storms. In comparison to the literature values for scoring agreement between experts, we observe a strong agreement between automatic and manual scoring of EDA events and a moderate agreement between automatic and manual scoring of EDA storms. EDA events and EDA storms detected with the algorithm can be further processed and used as training variables in machine learning algorithms to classify sleep health.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"78 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139174732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-12-05DOI: 10.3390/signals4040047
D. Varga
{"title":"Benford’s Law and Perceptual Features for Face Image Quality Assessment","authors":"D. Varga","doi":"10.3390/signals4040047","DOIUrl":"https://doi.org/10.3390/signals4040047","url":null,"abstract":"The rapid growth in multimedia, storage systems, and digital computers has resulted in huge repositories of multimedia content and large image datasets in recent years. For instance, biometric databases, which can be used to identify individuals based on fingerprints, facial features, or iris patterns, have gained a lot of attention both from academia and industry. Specifically, face image quality assessment (FIQA) has become a very important part of face recognition systems, since the performance of such systems strongly depends on the quality of input data, such as blur, focus, compression, pose, or illumination. The main contribution of this paper is an analysis of Benford’s law-inspired first digit distribution and perceptual features for FIQA. To be more specific, I investigate the first digit distributions in different domains, such as wavelet or singular values, as quality-aware features for FIQA. My analysis revealed that first digit distributions with perceptual features are able to reach a high performance in the task of FIQA.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"18 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138600915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-12-04DOI: 10.3390/signals4040046
Mustafa Khudhair, N. Gucunski
{"title":"Integrating Data from Multiple Nondestructive Evaluation Technologies Using Machine Learning Algorithms for the Enhanced Assessment of a Concrete Bridge Deck","authors":"Mustafa Khudhair, N. Gucunski","doi":"10.3390/signals4040046","DOIUrl":"https://doi.org/10.3390/signals4040046","url":null,"abstract":"Several factors impact the durability of concrete bridge decks, including traffic loads, fatigue, temperature changes, environmental stress, and maintenance activities. Detecting problems such as corrosion, delamination, or concrete degradation early on can lower maintenance costs. Nondestructive evaluation (NDE) techniques can detect these issues at early stages. Each NDE method, meanwhile, has limitations that reduce the accuracy of the assessment. In this study, multiple NDE technologies were combined with machine learning algorithms to improve the interpretation of half-cell potential (HCP) and electrical resistivity (ER) measurements. A parametric study was performed to analyze the influence of five parameters on HCP and ER measurements, such as the degree of saturation, corrosion length, delamination depth, concrete cover, and moisture condition of delamination. The results were obtained through finite element simulations and used to build two machine learning algorithms, a classification algorithm and a regression algorithm, based on Random Forest methodology. The algorithms were tested using data collected from a bridge deck in the BEAST® facility. Both machine learning algorithms were effective in improving the interpretation of the ER and HCP measurements using data from multiple NDE technologies.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"4 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138603870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-11-28DOI: 10.3390/signals4040045
Y. R. Veeranki, Riley Q. McNaboe, Hugo F. Posada-Quintero
{"title":"EEG-Based Seizure Detection Using Variable-Frequency Complex Demodulation and Convolutional Neural Networks","authors":"Y. R. Veeranki, Riley Q. McNaboe, Hugo F. Posada-Quintero","doi":"10.3390/signals4040045","DOIUrl":"https://doi.org/10.3390/signals4040045","url":null,"abstract":"Epilepsy is a complex neurological disorder characterized by recurrent and unpredictable seizures that affect millions of people around the world. Early and accurate epilepsy detection is critical for timely medical intervention and improved patient outcomes. Several methods and classifiers for automated epilepsy detection have been developed in previous research. However, the existing research landscape requires innovative approaches that can further improve the accuracy of diagnosing and managing patients. This study investigates the application of variable-frequency complex demodulation (VFCDM) and convolutional neural networks (CNN) to discriminate between healthy, interictal, and ictal states using electroencephalogram (EEG) data. For testing this approach, the EEG signals were collected from the publicly available Bonn dataset. A high-resolution time–frequency spectrum (TFS) of each EEG signal was obtained using the VFCDM. The TFS images were fed to the CNN classifier for the classification of the signals. The performance of CNN was evaluated using leave-one-subject-out cross-validation (LOSO CV). The TFS shows variations in its frequency for different states that correspond to variation in the neural activity. The LOSO CV approach yields a consistently high performance, ranging from 90% to 99% between different combinations of healthy and epilepsy states (interictal and ictal). The extensive LOSO CV validation approach ensures the reliability and robustness of the proposed method. As a result, the research contributes to advancing the field of epilepsy detection and brings us one step closer to developing practical, reliable, and efficient diagnostic tools for clinical applications.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"263 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139225728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-11-14DOI: 10.3390/signals4040043
Jonathan Mayer, Rejath Jose, Gregory Kurgansky, Paramvir Singh, Chris Coletti, Timothy Devine, Milan Toma
{"title":"Evaluating the Feasibility of Euler Angles for Bed-Based Patient Movement Monitoring","authors":"Jonathan Mayer, Rejath Jose, Gregory Kurgansky, Paramvir Singh, Chris Coletti, Timothy Devine, Milan Toma","doi":"10.3390/signals4040043","DOIUrl":"https://doi.org/10.3390/signals4040043","url":null,"abstract":"In the field of modern healthcare, technology plays a crucial role in improving patient care and ensuring their safety. One area where advancements can still be made is in alert systems, which provide timely notifications to hospital staff about critical events involving patients. These early warning systems allow for swift responses and appropriate interventions when needed. A commonly used patient alert technology is nurse call systems, which empower patients to request assistance using bedside devices. Over time, these systems have evolved to include features such as call prioritization, integration with staff communication tools, and links to patient monitoring setups that can generate alerts based on vital signs. There is currently a shortage of smart systems that use sensors to inform healthcare workers about the activity levels of patients who are confined to their beds. Current systems mainly focus on alerting staff when patients become disconnected from monitoring machines. In this technical note, we discuss the potential of utilizing cost-effective sensors to monitor and evaluate typical movements made by hospitalized bed-bound patients. To improve the care provided to unaware patients further, healthcare professionals could benefit from implementing trigger alert systems that are based on detecting patient movements. Such systems would promptly notify mobile devices or nursing stations whenever a patient displays restlessness or leaves their bed urgently and requires medical attention.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"69 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134900745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-11-10DOI: 10.3390/signals4040042
Mickaël Zehren, Marco Alunno, Paolo Bientinesi
{"title":"High-Quality and Reproducible Automatic Drum Transcription from Crowdsourced Data","authors":"Mickaël Zehren, Marco Alunno, Paolo Bientinesi","doi":"10.3390/signals4040042","DOIUrl":"https://doi.org/10.3390/signals4040042","url":null,"abstract":"Within the broad problem known as automatic music transcription, we considered the specific task of automatic drum transcription (ADT). This is a complex task that has recently shown significant advances thanks to deep learning (DL) techniques. Most notably, massive amounts of labeled data obtained from crowds of annotators have made it possible to implement large-scale supervised learning architectures for ADT. In this study, we explored the untapped potential of these new datasets by addressing three key points: First, we reviewed recent trends in DL architectures and focused on two techniques, self-attention mechanisms and tatum-synchronous convolutions. Then, to mitigate the noise and bias that are inherent in crowdsourced data, we extended the training data with additional annotations. Finally, to quantify the potential of the data, we compared many training scenarios by combining up to six different datasets, including zero-shot evaluations. Our findings revealed that crowdsourced datasets outperform previously utilized datasets, and regardless of the DL architecture employed, they are sufficient in size and quality to train accurate models. By fully exploiting this data source, our models produced high-quality drum transcriptions, achieving state-of-the-art results. Thanks to this accuracy, our work can be more successfully used by musicians (e.g., to learn new musical pieces by reading, or to convert their performances to MIDI) and researchers in music information retrieval (e.g., to retrieve information from the notes instead of audio, such as the rhythm or structure of a piece).","PeriodicalId":93815,"journal":{"name":"Signals","volume":"102 22","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-10-23DOI: 10.3390/signals4040041
Yousuf Al-Aali, Mounir T. Hamood, Said Boussakta
{"title":"Radix-22 Algorithm for the Odd New Mersenne Number Transform (ONMNT)","authors":"Yousuf Al-Aali, Mounir T. Hamood, Said Boussakta","doi":"10.3390/signals4040041","DOIUrl":"https://doi.org/10.3390/signals4040041","url":null,"abstract":"This paper introduces a new derivation of the radix-22 fast algorithm for the forward odd new Mersenne number transform (ONMNT) and the inverse odd new Mersenne number transform (IONMNT). This involves introducing new equations and functions in finite fields, bringing particular challenges unlike those in other fields. The radix-22 algorithm combines the benefits of the reduced number of operations of the radix-4 algorithm and the simple butterfly structure of the radix-2 algorithm, making it suitable for various applications such as lightweight ciphers, authenticated encryption, hash functions, signal processing, and convolution calculations. The multidimensional linear index mapping technique is the conventional method used to derive the radix-22 algorithm. However, this method does not provide clear insights into the underlying structure and flexibility of the radix-22 approach. This paper addresses this limitation and proposes a derivation based on bit-unscrambling techniques, which reverse the ordering of the output sequence, resulting in efficient calculations with fewer operations. Butterfly and signal flow diagrams are also presented to illustrate the structure of the fast algorithm for both ONMNT and IONMNT. The proposed method should pave the way for efficient and flexible implementation of ONMNT and IONMNT in applications such as lightweight ciphers and signal processing. The algorithm has been implemented in C and is validated with an example.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135413679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-10-18DOI: 10.3390/signals4040040
Stathis Hadjidemetriou, Ansgar Malich, Lorenz Damian Rossknecht, Luca Ferrarini, Ismini E. Papageorgiou
{"title":"Restoration for Intensity Nonuniformities with Discontinuities in Whole-Body MRI","authors":"Stathis Hadjidemetriou, Ansgar Malich, Lorenz Damian Rossknecht, Luca Ferrarini, Ismini E. Papageorgiou","doi":"10.3390/signals4040040","DOIUrl":"https://doi.org/10.3390/signals4040040","url":null,"abstract":"The reconstruction in MRI assumes a uniform radio-frequency field. However, this is violated due to coil field nonuniformity and sensitivity variations. In whole-body MRI, the nonuniformities are more complex due to the imaging with multiple coils that typically have different overall sensitivities that result in sharp sensitivity changes at the junctions between adjacent coils. These lead to images with anatomically inconsequential intensity nonuniformities that include jump discontinuities of the intensity nonuniformities at the junctions corresponding to adjacent coils. The body is also imaged with multiple contrasts that result in images with different nonuniformities. A method is presented for the joint intensity uniformity restoration of two such images to achieve intensity homogenization. The effect of the spatial intensity distortion on the auto-co-occurrence statistics of each image as well as on the joint-co-occurrence statistics of the two images is modeled in terms of Point Spread Function (PSF). The PSFs and the non-stationary deconvolution of these PSFs from the statistics offer posterior Bayesian expectation estimates of the nonuniformity with Bayesian coring. Subsequently, a piecewise smoothness constraint is imposed for nonuniformity. This uses non-isotropic smoothing of the restoration field to allow the modeling of junction discontinuities. The implementation of the restoration method is iterative and imposes stability and validity constraints of the nonuniformity estimates. The effectiveness and accuracy of the method is demonstrated extensively with whole-body MRI image pairs of thirty-one cancer patients.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135890088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-10-18DOI: 10.3390/signals4040039
Marco Ivaldi, Lorenzo Giacometti, David Conversi
{"title":"Quantitative Electroencephalography: Cortical Responses under Different Postural Conditions","authors":"Marco Ivaldi, Lorenzo Giacometti, David Conversi","doi":"10.3390/signals4040039","DOIUrl":"https://doi.org/10.3390/signals4040039","url":null,"abstract":"In this study, the alpha and beta spectral frequency bands and amplitudes of EEG signals recorded from 10 healthy volunteers using an experimental cap with neoprene jacketed electrodes were analysed. Background: One of the main limitations in the analysis of EEG signals during movement is the presence of artefacts due to cranial muscle contraction; the objectives of this study therefore focused on two main aspects: (1) validating a tool capable of decreasing movement artefacts, while developing a reliable method for the quantitative analysis of EEG data; (2) using this method to analyse the EEG signal recorded during a particular motor activity (bi- and monopodalic postural control). Methods: The EEG sampling frequency was 512 Hz; the signal was acquired on 16 channels with monopolar montage and the reference on Cz. The recorded signals were processed using a specifically written Matlab script and also by exploiting open-source software (Eeglab). Results: The procedure used showed excellent reliability, allowing for a significant decrease in movement artefacts even during motor tasks performed both with eyes open and with eyes closed. Conclusions: This preliminary study lays the foundation for correctly recording EEG signals as an additional source of information in the study of human movement.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"876 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135890091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignalsPub Date : 2023-10-13DOI: 10.3390/signals4040038
Razi Hamada, Ievgeniia Kuzminykh
{"title":"Exploitation Techniques of IoST Vulnerabilities in Air-Gapped Networks and Security Measures—A Systematic Review","authors":"Razi Hamada, Ievgeniia Kuzminykh","doi":"10.3390/signals4040038","DOIUrl":"https://doi.org/10.3390/signals4040038","url":null,"abstract":"IP cameras and digital video recorders, as part of the Internet of Surveillance Things (IoST) technology, can sometimes allow unauthenticated access to the video feed or management dashboard. These vulnerabilities may result from weak APIs, misconfigurations, or hidden firmware backdoors. What is particularly concerning is that these vulnerabilities can stay unnoticed for extended periods, spanning weeks, months, or even years, until a malicious attacker decides to exploit them. The response actions in case of identifying the vulnerability, such as updating software and firmware for millions of IoST devices, might be challenging and time-consuming. Implementing an air-gapped video surveillance network, which is isolated from the internet and external access, can reduce the cybersecurity threats associated with internet-connected IoST devices. However, such networks can also be susceptible to other threats and attacks, which need to be explored and analyzed. In this work, we perform a systematic literature review on the current state of research and use cases related to compromising and protecting cameras in logical and physical air-gapped networks. We provide a network diagram for each mode of exploitation, discuss the vulnerabilities that could result in a successful attack, demonstrate the potential impacts on organizations in the event of IoST compromise, and outline the security measures and mechanisms that can be deployed to mitigate these security risks.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135855643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}