{"title":"Radix-22 Algorithm for the Odd New Mersenne Number Transform (ONMNT)","authors":"Yousuf Al-Aali, Mounir T. Hamood, Said Boussakta","doi":"10.3390/signals4040041","DOIUrl":null,"url":null,"abstract":"This paper introduces a new derivation of the radix-22 fast algorithm for the forward odd new Mersenne number transform (ONMNT) and the inverse odd new Mersenne number transform (IONMNT). This involves introducing new equations and functions in finite fields, bringing particular challenges unlike those in other fields. The radix-22 algorithm combines the benefits of the reduced number of operations of the radix-4 algorithm and the simple butterfly structure of the radix-2 algorithm, making it suitable for various applications such as lightweight ciphers, authenticated encryption, hash functions, signal processing, and convolution calculations. The multidimensional linear index mapping technique is the conventional method used to derive the radix-22 algorithm. However, this method does not provide clear insights into the underlying structure and flexibility of the radix-22 approach. This paper addresses this limitation and proposes a derivation based on bit-unscrambling techniques, which reverse the ordering of the output sequence, resulting in efficient calculations with fewer operations. Butterfly and signal flow diagrams are also presented to illustrate the structure of the fast algorithm for both ONMNT and IONMNT. The proposed method should pave the way for efficient and flexible implementation of ONMNT and IONMNT in applications such as lightweight ciphers and signal processing. The algorithm has been implemented in C and is validated with an example.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new derivation of the radix-22 fast algorithm for the forward odd new Mersenne number transform (ONMNT) and the inverse odd new Mersenne number transform (IONMNT). This involves introducing new equations and functions in finite fields, bringing particular challenges unlike those in other fields. The radix-22 algorithm combines the benefits of the reduced number of operations of the radix-4 algorithm and the simple butterfly structure of the radix-2 algorithm, making it suitable for various applications such as lightweight ciphers, authenticated encryption, hash functions, signal processing, and convolution calculations. The multidimensional linear index mapping technique is the conventional method used to derive the radix-22 algorithm. However, this method does not provide clear insights into the underlying structure and flexibility of the radix-22 approach. This paper addresses this limitation and proposes a derivation based on bit-unscrambling techniques, which reverse the ordering of the output sequence, resulting in efficient calculations with fewer operations. Butterfly and signal flow diagrams are also presented to illustrate the structure of the fast algorithm for both ONMNT and IONMNT. The proposed method should pave the way for efficient and flexible implementation of ONMNT and IONMNT in applications such as lightweight ciphers and signal processing. The algorithm has been implemented in C and is validated with an example.