Energy nexus最新文献

筛选
英文 中文
Numerical analysis of Savonius hydrokinetic turbine performance in straight and curved channel configurations
IF 8
Energy nexus Pub Date : 2025-02-09 DOI: 10.1016/j.nexus.2025.100382
Shanegowda T G , Shashikumar C M , Veershetty Gumtapure , Vasudeva Madav
{"title":"Numerical analysis of Savonius hydrokinetic turbine performance in straight and curved channel configurations","authors":"Shanegowda T G ,&nbsp;Shashikumar C M ,&nbsp;Veershetty Gumtapure ,&nbsp;Vasudeva Madav","doi":"10.1016/j.nexus.2025.100382","DOIUrl":"10.1016/j.nexus.2025.100382","url":null,"abstract":"<div><div>The global shift towards renewable energy has driven research into efficient hydrokinetic energy harvesting, particularly using Savonius turbines for their simplicity and adaptability to low-flow environments. While previous studies have focused primarily on straight channels, the impact of channel bends, commonly found in agricultural canals, rivers, and irrigation channels, remains underexplored. The present 3D transient numerical study addresses this gap by investigating the performance of Savonius hydrokinetic turbines in channels with 30°, 60°, and 90° bends, evaluating their efficiency under varying flow conditions. The research aims to evaluate the impact of these channel bends on key performance parameters such as the tip speed ratio (TSR), torque coefficient (C<sub>T</sub>) and power coefficient (C<sub>P</sub>), supported by detailed pressure and velocity contour analyses. The turbine positioned in the 30° bend emerged as the most efficient configuration, achieving a C<sub>Tmax</sub> of 0.29 at 0.7 TSR and C<sub>Pmax</sub> of 0.24 at 1.0 TSR. The 60° and 90° bends exhibited efficiency reductions of 15 % and 30 %, respectively, due to adverse pressure gradients and increased turbulence. Velocity contour plots demonstrated reduced wake regions and optimized flow reattachment for the 30° bend, while pressure contour analysis indicated lower drag forces on the advancing blades. This study highlights the potential of using Savonius turbines in agricultural channels, recommending the 30° bend as the optimal channel configuration to maximize turbine efficiency, providing a sustainable solution for energy generation in rural and low-flow environments.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100382"},"PeriodicalIF":8.0,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-economic and life cycle greenhouse gas assessment of green ammonia produced by low-pressure Haber-Bosch process
IF 8
Energy nexus Pub Date : 2025-02-09 DOI: 10.1016/j.nexus.2025.100379
Guohui Song , Yumeng Chen , Yingfeng He , Qize Jia , Qingjiao Wu , Xiaobo Cui , Hao Zhao
{"title":"Techno-economic and life cycle greenhouse gas assessment of green ammonia produced by low-pressure Haber-Bosch process","authors":"Guohui Song ,&nbsp;Yumeng Chen ,&nbsp;Yingfeng He ,&nbsp;Qize Jia ,&nbsp;Qingjiao Wu ,&nbsp;Xiaobo Cui ,&nbsp;Hao Zhao","doi":"10.1016/j.nexus.2025.100379","DOIUrl":"10.1016/j.nexus.2025.100379","url":null,"abstract":"<div><div>Green ammonia can be used as an energy storage carrier and a sustainable chemical. To improve the competitiveness of green ammonia, two power-to-ammonia (PtA) processes integrated with low-pressure (LP) and ultra-low-pressure (ULP) Haber-Bosch (HB) techniques were designed and optimized based on technical, economic, and environmental performances. The effects of multiple variables were studied. The LP technique is preferred over the ULP technique because the latter has a more complex configuration and a slightly higher levelized cost. The systematic energy efficiency excluding or including the cold energy of liquid ammonia reaches 68.71 % or 73.75 %, respectively. The unit power consumption of green ammonia is as low as 7.64 kWh/kg. The plant scale should not be &lt;10 t/h. Based on the electricity price for energy storage (0.041 €/kWh), the equivalent operating hours should exceed 5000 h to achieve profitability. The life cycle greenhouse gas emission of green ammonia derived from wind power under the Chinese scenario is 257–316 kgCO<sub>2</sub>e/t. The life cycle ammonia emissions with NH<sub>3</sub> recovery from the purge gas is &lt;0.06 kgNH<sub>3</sub>/t. This study indicates that the PtA technology can efficiently store intermittent electricity with cold energy utilization and effectively decarbonize the ammonia industry.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100379"},"PeriodicalIF":8.0,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic and thermodynamic insights into sewage sludge torrefaction: Energetic optimization and safety considerations 污水污泥热解的动力学和热力学研究:能量优化和安全考虑
IF 8
Energy nexus Pub Date : 2025-02-09 DOI: 10.1016/j.nexus.2025.100377
Blanca Castells , Roberto Paredes , David León , Isabel Amez
{"title":"Kinetic and thermodynamic insights into sewage sludge torrefaction: Energetic optimization and safety considerations","authors":"Blanca Castells ,&nbsp;Roberto Paredes ,&nbsp;David León ,&nbsp;Isabel Amez","doi":"10.1016/j.nexus.2025.100377","DOIUrl":"10.1016/j.nexus.2025.100377","url":null,"abstract":"<div><div>In the current energetic scenario, biofuels play a crucial role, with torrefaction being one of the most popular pretreatments as it significantly reduces the main disadvantages of these fuels. This study provides novel insights into torrefied sewage sludge as a solid biofuel by examining both the energetic conversion process and associated safety issues. To do so, torrefaction was carried out at three different temperatures (220 °C, 250 °C, and 300 °C) and two residence times (30 and 60 min), resulting in seven distinct samples. These samples underwent proximate analysis, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) in air, nitrogen, and oxygen atmospheres to simulate combustion, pyrolysis, and determine heating values respectively. The analysis reveals that torrefaction at 300 °C for 60 min produces the best results, enhancing the higher heating value (HHV) by 6% and increasing reaction heat by 16%. Additionally, we observed lower pyrolysis activation energies in samples torrefied for 30 min compared to 60 min. The kinetic parameters were meticulously evaluated, showing a clear relationship between torrefaction parameters and pyrolysis activation energy. For instance, the activation energy (<em>Ea</em>) for raw sewage sludge was found to be between 338.02 kJ/mol and 375.43 kJ/mol. In contrast, torrefied samples showed reduced <em>Ea</em> values mostly under 300 kJ/mol. For the first time, we assessed self-ignition risk through TGA, finding that while most samples exhibit low risk, the increased heating value from torrefaction does elevate this risk. This comprehensive evaluation not only advances the understanding of sewage sludge torrefaction but also offers a practical framework for integrating biofuels into sustainable energy systems, supporting global efforts toward cleaner energy transitions.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100377"},"PeriodicalIF":8.0,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing energy use efficiency and environmental performance in cotton and canola production using the Imperialist Competitive Algorithm
IF 8
Energy nexus Pub Date : 2025-02-09 DOI: 10.1016/j.nexus.2025.100392
Mousa Mirmoradi , Mohammad Gholami Parashkoohi , Hamed Afshari , Ahmad Mohammadi
{"title":"Optimizing energy use efficiency and environmental performance in cotton and canola production using the Imperialist Competitive Algorithm","authors":"Mousa Mirmoradi ,&nbsp;Mohammad Gholami Parashkoohi ,&nbsp;Hamed Afshari ,&nbsp;Ahmad Mohammadi","doi":"10.1016/j.nexus.2025.100392","DOIUrl":"10.1016/j.nexus.2025.100392","url":null,"abstract":"<div><div>This study focuses on optimizing energy efficiency and environmental performance in the production of cotton and canola through the application of the Imperialist Competitive Algorithm (ICA). Conducted in the Dasht-e Gorgan region of Iran, the research provides a comprehensive analysis of energy inputs and outputs for both crops. The findings reveal distinct differences in energy utilization, with cotton requiring significantly more labor (120 h) and machine energy (6,270 MJ) compared to canola, which utilizes less labor (79 h) and machine energy (2,821.5 MJ). However, canola's dependency on diesel fuel is higher, consuming 6,757.21 MJ against cotton's 5,631 MJ. While cotton demonstrates greater nitrogen energy utilization at 7,810 MJ, canola's nitrogen consumption by volume is 10,153 MJ. Furthermore, cotton production incurs higher biocide energy inputs (1,750 MJ) due to pest management challenges. Total energy consumption per hectare is slightly higher for cotton (26,083.80 MJ) relative to canola (25,747.04 MJ), yet cotton yields greater output (2,900 kg vs. 2,300 kg), indicating superior yield efficiency. Energy use efficiency favors canola with a conversion rate of 2.23 compared to cotton's 1.31, as well as a significantly higher net energy gain (31,752.96 MJ ha<sup>–1</sup> for canola versus 8,136.20 MJ ha<sup>–1</sup> for cotton). Environmental impacts also differ; canola's fertilizer use contributes more nitrogen oxides and ammonia, potentially affecting water quality, while cotton's labor-intensive methods lead to increased emissions of heavy metals and CO<sub>2</sub>. In terms of human health impacts, cotton shows a lower Disability-Adjusted Life Years (0.064 DALY) compared to canola (0.089 DALY). Financially, cotton demonstrates lower resource intensity (115.36 USD2013) than canola (187.56 USD2013). To mitigate the environmental effects associated with both crops, this study recommends strategies such as precision agriculture, the integration of renewable energy, and enhancements in soil health, all aimed at improving overall sustainability in cotton and canola production.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100392"},"PeriodicalIF":8.0,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recrystallization of tri-sodium phosphate from Thai monazite concentrate decomposition as solid catalyst for biodiesel production
IF 8
Energy nexus Pub Date : 2025-02-09 DOI: 10.1016/j.nexus.2025.100385
Dussadee Rattanaphra , Wilasinee Kingkam , Sasikarn Nuchdang , Chantaraporn Phalakornkule , Unchalee Suwanmanee
{"title":"Recrystallization of tri-sodium phosphate from Thai monazite concentrate decomposition as solid catalyst for biodiesel production","authors":"Dussadee Rattanaphra ,&nbsp;Wilasinee Kingkam ,&nbsp;Sasikarn Nuchdang ,&nbsp;Chantaraporn Phalakornkule ,&nbsp;Unchalee Suwanmanee","doi":"10.1016/j.nexus.2025.100385","DOIUrl":"10.1016/j.nexus.2025.100385","url":null,"abstract":"<div><div>Tri-sodium phosphate (TSP) obtained from alkaline baking process of Thai monazite concentrate was used as raw material to synthesize the solid catalyst for biodiesel production. The TSP catalysts were prepared via recrystallization method with the ratio of Na<sub>3</sub>PO<sub>4</sub>·12H<sub>2</sub>O: H<sub>2</sub>O of 1:15 by lower temperature from 80 to 30 °C using stirring rate of 400 rpm and calcined at 300–700 °C. The catalytic performances were evaluated in the transesterification of palm oil with methanol. According to the results, the radioactive material (uranium) of &lt; 10 mg kg<sup>-1</sup> was detected after recrystallization, which was considered safe to use as catalyst. The TSP calcined at 600 °C showed active pure tetragonal phase with high basic sites strength and basicity, and can produce the highest fatty acid methyl ester (FAME) content of 91 % under the reaction conditions: the molar ratio of oil to methanol of 1:9, the catalyst loading of 5 wt %, the reaction temperature of 80 °C and the reaction time of 5 h. There was a significant leaching of active Na<sup>+</sup> during the reaction. The improvement of stability and reusability of the catalyst and economic analysis will be further investigated for its utilization in the large-scale biodiesel production. This development can enhance the economic value of TSP as by product obtained from mineral monazite processing and also provides an idea for designing the economic viability of rare earth production.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100385"},"PeriodicalIF":8.0,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collaborative swarm robotics for sustainable environment monitoring and exploration: Emerging trends and research progress
IF 8
Energy nexus Pub Date : 2025-02-08 DOI: 10.1016/j.nexus.2025.100365
Belkacem Khaldi , Fouzi Harrou , Ying Sun
{"title":"Collaborative swarm robotics for sustainable environment monitoring and exploration: Emerging trends and research progress","authors":"Belkacem Khaldi ,&nbsp;Fouzi Harrou ,&nbsp;Ying Sun","doi":"10.1016/j.nexus.2025.100365","DOIUrl":"10.1016/j.nexus.2025.100365","url":null,"abstract":"<div><div>This study explores the application of swarm robotics and swarm and evolutionary computing techniques in environmental management and sustainability, a highly specific and increasingly demanding niche research area. Through a bibliometric analysis of two collections of peer-reviewed papers, key trends and emerging research areas are identified. The first collection, comprising approximately 450 papers, focuses on specific applications of swarm robotics systems in environmental use cases, including swarms of UAVs, AUVs, and USVs, particularly in tasks such as ecological monitoring, agricultural management, and disaster response. This analysis highlights essential keyword clusters, with ``ecological restoration'' emerging as a significant topic, and ``agricultural robots'' and ``remote sensing'' as active frontiers. Building on this analysis, eight directions are proposed to address environmental challenges across five categories. The second collection, consisting of around 198 papers, examines the different swarm and evolutionary computing algorithms employed in this niche area, identifying ten significant research clusters. Notably, the ``secure incentive mechanism'' is a trending area, emphasizing the development of reliable and secure cooperative multi-robot systems. Recent methods in this cluster utilize deep reinforcement learning and heuristic algorithms to enhance cooperation efficiency. Five potential directions categorized into two main groups are explored to address security and reliability challenges within swarm robot systems in environmental tasks. The findings underscore the critical role of swarm robotics in environment-focused tasks such as ecosystem recovery and the importance of secure cooperation mechanisms, paving the way for advancements in agriculture, resource management, intelligent infrastructure, and urban systems.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100365"},"PeriodicalIF":8.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring interlinkages in land, energy, and water in cooking and agriculture sectors: A case study in Kenya
IF 8
Energy nexus Pub Date : 2025-02-08 DOI: 10.1016/j.nexus.2025.100366
Roberto Heredia-Fonseca, Francesco Gardumi, Will Usher
{"title":"Exploring interlinkages in land, energy, and water in cooking and agriculture sectors: A case study in Kenya","authors":"Roberto Heredia-Fonseca,&nbsp;Francesco Gardumi,&nbsp;Will Usher","doi":"10.1016/j.nexus.2025.100366","DOIUrl":"10.1016/j.nexus.2025.100366","url":null,"abstract":"<div><div>This study contributes to the Climate, Land, Energy, and Water system (CLEWs) framework by developing an integrated model for Kenya capturing the interdependencies between climate, land, energy, and water systems. Focusing on cooking and crop production, it examines their contributions to land use changes, mainly deforestation, and emissions. We evaluate three scenarios—BAU, SC1, and SC2- that target clean cooking transitions and reduced crop imports, covering seven crops representing 72 % of Kenya's cultivated area. We detail the challenges of gathering data to populate such a model through document examination and literature review, and we identified uncertain input parameters. Results show that forest loss from cooking varies with the fraction of non-renewable biomass (fNRB). Under BAU, forest cover loss could range from 300 km² at an fNRB of 0.3 to 900 km² at 0.9. Scenarios SC1 and SC2 mitigate these impacts through cleaner cooking solutions. By 2050, under the clean cooking scenario (SC2), LPG stoves could achieve up to 96 % penetration, reducing CO<sub>2</sub> emissions to 8.3 MTon and PM<sub>2.5</sub> to 0.8 kTon, compared to high emissions in the BAU scenario dominated by wood and charcoal stoves. In agriculture, land use expands by 56 %, 69 %, and 33 % across the scenarios, while fossil fuel use rises from 2.46 PJ to 5.9 PJ by 2050, increasing CO<sub>2</sub> emissions, from 183 kTon to 436 kTon. The findings highlight the need for integrated policies promoting clean cooking, sustainable agriculture, and deforestation mitigation. This integrated CLEWs approach provides actional insights for reducing deforestation and emissions in energy and agriculture sectors.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100366"},"PeriodicalIF":8.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of food wastes from the hotel industry as a potential feedstock for energy production
IF 8
Energy nexus Pub Date : 2025-02-08 DOI: 10.1016/j.nexus.2025.100364
Emily Machuma Muchele , Booker Osodo , Isaiah Omosa , Emmanuel Yeri Kombe
{"title":"Characterization of food wastes from the hotel industry as a potential feedstock for energy production","authors":"Emily Machuma Muchele ,&nbsp;Booker Osodo ,&nbsp;Isaiah Omosa ,&nbsp;Emmanuel Yeri Kombe","doi":"10.1016/j.nexus.2025.100364","DOIUrl":"10.1016/j.nexus.2025.100364","url":null,"abstract":"<div><div>Food waste contribute to 38% of total Municipal Solid Wastes (MSW) in Kenya and end up in landfills. Due to high competition in the available space, most cities, including Nairobi, do not have enough space for landfills. Therefore, there is a need for efficient ways to manage the generated waste. Developed countries have embraced Waste-to-Energy technologies, minimizing waste generation and converting generated waste into energy and other resources. Waste characterization is a key element in the energy generation process not only to identify important parameters but also to guide biomass source segmentation. In this study, food wastes were collected from 21 hotels within Nairobi City County, in different mixed ratios and subdivided into five samples for investigation and analysis. The average feedstock characteristics were observed to be moisture content (6.0%, <em>p</em> &lt; .001, <em>R<sup>2</sup></em> = 90.70 %), total solid (93.7%, <em>p</em> &lt; .001, <em>R<sup>2</sup></em> = 99.97 %), volatile solid (84.3%, <em>p</em> &lt; .001, <em>R<sup>2</sup></em> = 99.80 %), ash content (4.2%, <em>p</em> = .005, <em>R<sup>2</sup></em>= 48.54 %), fixed carbon (5.4%, <em>p</em> &lt; .001, <em>R<sup>2</sup></em> = 88.61%), nitrogen (3.6%, <em>p</em> = .04, <em>R<sup>2</sup></em> = 36.81 %), carbon to nitrogen ratio C/N (4.0), crude protein (22.4%, <em>p</em> = .004, <em>R<sup>2</sup></em> = 49.36 % ), crude lipids (12.1%, <em>p</em> &lt; .001, <em>R<sup>2</sup></em> = 89.06 %), total organic carbon (44%, <em>p</em> &lt; . 001, <em>R<sup>2</sup></em> = 94.70%), potassium (0.6%), sodium (1.2%), calcium (0.2%), and phosphorus (0.4%). The potassium, sodium, calcium and phosphorus <em>p</em> and <em>R<sup>2</sup></em> values all calculated together were p &lt; .001 and <em>R<sup>2</sup></em>= 72.35%. The results showed a significant difference in the means of the samples with the majority of the parameters registering a strong positive correlation of above 50%. The analysis revealed that the feedstock under investigation contained well-balanced parameters for briquette, biogas, syngas and biochar production. Therefore, the findings of this research provide vital knowledge in integrating energy production from food wastes thereby improving the efficiency of food waste utilization.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100364"},"PeriodicalIF":8.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of 5G network in revolutionizing agriculture for sustainable development: A comprehensive review
IF 8
Energy nexus Pub Date : 2025-02-08 DOI: 10.1016/j.nexus.2025.100368
Wasif ur Rehman , Mohsin Ali Koondhar , Samandar Khan Afridi , Lutfi Albasha , Idris H. Smaili , Ezzeddine Touti , Mouloud Aoudia , Wassim Zahrouni , Ibrahim Mahariq , M.M.R. Ahmed
{"title":"The role of 5G network in revolutionizing agriculture for sustainable development: A comprehensive review","authors":"Wasif ur Rehman ,&nbsp;Mohsin Ali Koondhar ,&nbsp;Samandar Khan Afridi ,&nbsp;Lutfi Albasha ,&nbsp;Idris H. Smaili ,&nbsp;Ezzeddine Touti ,&nbsp;Mouloud Aoudia ,&nbsp;Wassim Zahrouni ,&nbsp;Ibrahim Mahariq ,&nbsp;M.M.R. Ahmed","doi":"10.1016/j.nexus.2025.100368","DOIUrl":"10.1016/j.nexus.2025.100368","url":null,"abstract":"<div><div>The deployment of 5G technologies in the agricultural sector promises to revolutionize smart farming practices by enabling unprecedented levels of connectivity, data exchange, and real-time monitoring. This paper presents a comprehensive review of the challenges, considerations, and future directions of integrating 5G technologies into smart agriculture, aligning with Sustainable Development Goals (SDGs) such as SDG 2 (Zero Hunger) and SDG 9 (Industry, Innovation, and Infrastructure).Key topics discussed include the necessity of dense network infrastructure, optimization strategies for cross-deployment of 5G and sensing networks, and the role of edge computing in 5G-enabled farming production. Additionally, the paper explores development optimization of various nodes, fault detection, self-healing mechanisms, AI application optimization, and security issues specific to 5G-enabled smart agriculture. Furthermore, the paper examines the potential impact of 5G technology on crucial agricultural tasks such as real-time monitoring, UAV operations, augmented reality (AR), virtual reality (VR) applications, virtual consultation, predictive maintenance, AI-driven robotics, and data analytics. Through a thorough analysis of these topics, the paper underscores the potential of 5G technology in enhancing productivity, reducing environmental impact, and advancing sustainable agricultural practices. The paper identifies critical areas for further research and emphasizes the importance of collaborative efforts among stakeholders to maximize the benefits of 5G-enabled smart farming, thereby contributing to global efforts to achieve SDGs related to food security, innovation in technology, and sustainable infrastructure.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100368"},"PeriodicalIF":8.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An interval-valued type 2 intuitionistic fuzzy theory-based approach to assess the biofuel production and adoption drivers in emerging economies: Implications for sustainability
IF 8
Energy nexus Pub Date : 2025-02-08 DOI: 10.1016/j.nexus.2025.100369
Shah Murtoza Morshed , Md Shihab Shakur , Rafat Rahman , Mohammad Mynul Islam Mahin , Binoy Debnath , Arman Hossain Apu , Fairuz Al Nafiz , A.B.M. Mainul Bari
{"title":"An interval-valued type 2 intuitionistic fuzzy theory-based approach to assess the biofuel production and adoption drivers in emerging economies: Implications for sustainability","authors":"Shah Murtoza Morshed ,&nbsp;Md Shihab Shakur ,&nbsp;Rafat Rahman ,&nbsp;Mohammad Mynul Islam Mahin ,&nbsp;Binoy Debnath ,&nbsp;Arman Hossain Apu ,&nbsp;Fairuz Al Nafiz ,&nbsp;A.B.M. Mainul Bari","doi":"10.1016/j.nexus.2025.100369","DOIUrl":"10.1016/j.nexus.2025.100369","url":null,"abstract":"<div><div>Biofuels, obtained from locally developed biomass, provide a sustainable energy alternative to reduce reserve depletion, environmental pollution, and rising energy demand in emerging economies like Bangladesh. These fuels can deal with the concerns about energy security through the diversification of the energy mix and mitigation of dependence on expensive imported fossil fuels. Given the ongoing energy shortages, inadequate policy frameworks, and escalating energy demands prompted by population growth and industrial expansion, biofuels have emerged as a sustainable solution. Therefore, this study tries to investigate the biofuel production and adoption drivers employing an integrated multi-criteria decision-making (MCDM) approach. Specifically, it combines the interval-valued type 2 intuitionistic fuzzy (IVT2IF) theory and the decision-making trial and evaluation laboratory (DEMATEL) method to determine, rank, and assess the correlation among the drivers that affect the sustainable production and adoption of biofuel in emerging economies like Bangladesh. The drivers were initially extracted through a systematic literature review of the existing literature. Followed by expert validation, 17 drivers were chosen for analysis utilizing the IVT2IF-DEMATEL technique. The findings suggest that \"facilitating advanced R&amp;D and efficient training regimen\", \"promoting technological advancements\", \"enhanced energy security and resilience,\" and \"development of the diversified renewable energy mix\" are the most significant drivers, with prominence values 15.616, 15.467, 15.164, and 15.067, respectively. Furthermore, \"streamlining bio-waste management processes\" holds the highest significance as a causal driver (with a causal weight of 1.290), which is trailed by \"commercialization of biofuel retrofits\" and \"efficient agricultural resource management\" (which have causal weights of 0.696 and 0.505, respectively). The study's actionable insights can potentially aid policymakers and decision-makers in formulating investment policies and long-term strategic planning focusing on areas including R&amp;D, infrastructure development, technology, waste management, and renewable energy to achieve energy security, sustainability, and carbon neutrality in Bangladesh.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100369"},"PeriodicalIF":8.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信