{"title":"Starlike functions associated with $ tanh z $ and Bernardi integral operator","authors":"Pratima Rai, A. Çetinkaya, Sushil Kumar","doi":"10.3934/mfc.2022032","DOIUrl":"https://doi.org/10.3934/mfc.2022032","url":null,"abstract":"<p style='text-indent:20px;'>We determine the necessary and sufficient convolution conditions for the starlike functions on the open unit disk and related to some geometric aspects of the function <inline-formula><tex-math id=\"M8\">begin{document}$ tanh z $end{document}</tex-math></inline-formula>. We also determine sharp bounds on second and third order Hermitian-Toeplitz determinants for such functions. Further, we compute estimates on some initial coefficients and the Hankel determinants of third and fourth order. In addition, using the concept of Briot-Bouquet type differential subordination, we establish a subordination inclusion involving Bernardi integral operator.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73022462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dunkl analouge of Sz$ acute{a} $sz Schurer Beta bivariate operators","authors":"V. Mishra, Mohd Raiz, N. Rao","doi":"10.3934/mfc.2022037","DOIUrl":"https://doi.org/10.3934/mfc.2022037","url":null,"abstract":"<p style='text-indent:20px;'>The motive of this research article is to introduce a sequence of Sz<inline-formula><tex-math id=\"M2\">begin{document}$ acute{a}sz $end{document}</tex-math></inline-formula> Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B<inline-formula><tex-math id=\"M3\">begin{document}$ ddot{o} $end{document}</tex-math></inline-formula>gel space via mixed modulus of continuity.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78307449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence theorems in Orlicz and Bögel continuous functions spaces by means of Kantorovich discrete type sampling operators","authors":"Serkan Ayan, N. Ispir","doi":"10.3934/mfc.2022056","DOIUrl":"https://doi.org/10.3934/mfc.2022056","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78885437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. López-Pellicer, S. López-Alfonso, S. Moll-López
{"title":"Revisiting Mazur separable quotient problem (1932)","authors":"M. López-Pellicer, S. López-Alfonso, S. Moll-López","doi":"10.3934/mfc.2022063","DOIUrl":"https://doi.org/10.3934/mfc.2022063","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77479829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a special class of modified integral operators preserving some exponential functions","authors":"G. Uysal","doi":"10.3934/mfc.2021044","DOIUrl":"https://doi.org/10.3934/mfc.2021044","url":null,"abstract":"<p style='text-indent:20px;'>In the present paper, we consider a general class of operators enriched with some properties in order to act on <inline-formula><tex-math id=\"M1\">begin{document}$ C^{ast }( mathbb{R} _{0}^{+}) $end{document}</tex-math></inline-formula>. We establish uniform convergence of the operators for every function in <inline-formula><tex-math id=\"M2\">begin{document}$ C^{ast }( mathbb{R} _{0}^{+}) $end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M3\">begin{document}$ mathbb{R} _{0}^{+} $end{document}</tex-math></inline-formula>. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83126343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Error analysis of classification learning algorithms based on LUMs loss","authors":"Xuqing He, Hongwei Sun","doi":"10.3934/mfc.2022028","DOIUrl":"https://doi.org/10.3934/mfc.2022028","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space <inline-formula><tex-math id=\"M1\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>, and the penalty term is denoted by the norm of the function in <inline-formula><tex-math id=\"M2\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer <inline-formula><tex-math id=\"M3\">begin{document}$ f_V $end{document}</tex-math></inline-formula> of the generalization error can be approximated by the hypothesis space <inline-formula><tex-math id=\"M4\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>, and by a leave one out variant technique proposed in [<xref ref-type=\"bibr\" rid=\"b13\">13</xref>], satisfying error bound and learning rate about the mean of excess classification error are deduced.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87095307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On approximation of unbounded functions by certain modified Bernstein operators","authors":"R. Păltănea","doi":"10.3934/mfc.2023014","DOIUrl":"https://doi.org/10.3934/mfc.2023014","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79628158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rates of weighted statistical convergence for a generalization of positive linear operators","authors":"Reyhan Canatan Ilbey, O. Dogru","doi":"10.3934/mfc.2022059","DOIUrl":"https://doi.org/10.3934/mfc.2022059","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76257438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}