Mathematical foundations of computing最新文献

筛选
英文 中文
Some structures of submatrices in solution to the paire of matrix equations $ AX = C $, $ XB = D $ 矩阵方程对$ AX = C $, $ XB = D $的若干解的子矩阵结构
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022023
Radja Belkhiri, Sihem Guerarra
{"title":"Some structures of submatrices in solution to the paire of matrix equations $ AX = C $, $ XB = D $","authors":"Radja Belkhiri, Sihem Guerarra","doi":"10.3934/mfc.2022023","DOIUrl":"https://doi.org/10.3934/mfc.2022023","url":null,"abstract":"<p style='text-indent:20px;'>The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices <inline-formula><tex-math id=\"M3\">begin{document}$ X_{1}X_{1}^{ast}-P_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">begin{document}$ X_{2}X_{2}^{ast}-P_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">begin{document}$ X_{3}X_{3}^{ast}-P_{2} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M6\">begin{document}$ X_{4}X_{4}^{ast }-P_{2} $end{document}</tex-math></inline-formula>, with respect to <inline-formula><tex-math id=\"M7\">begin{document}$ X_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">begin{document}$ X_{2} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M9\">begin{document}$ X_{3} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">begin{document}$ X_{4} $end{document}</tex-math></inline-formula> respectively, where <inline-formula><tex-math id=\"M11\">begin{document}$ P_{1}in mathbb{C} ^{n_{1}times n_{1}} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">begin{document}$ P_{2}in mathbb{C} ^{n_{2}times n_{2}} $end{document}</tex-math></inline-formula> are given, <inline-formula><tex-math id=\"M13\">begin{document}$ X_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M14\">begin{document}$ X_{2} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M15\">begin{document}$ X_{3} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M16\">begin{document}$ X_{4} $end{document}</tex-math></inline-formula> are submatrices in a general common solution <inline-formula><tex-math id=\"M17\">begin{document}$ X $end{document}</tex-math></inline-formula> to the paire of matrix equations <inline-formula><tex-math id=\"M18\">begin{document}$ AX = C $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M19\">begin{document}$ XB = D. $end{document}</tex-math></inline-formula></p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"89 1","pages":"231-252"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88200490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dunkl analouge of Sz$ acute{a} $sz Schurer Beta bivariate operators Sz$ acute{a} $ Sz Schurer Beta二元算子的Dunkl模拟
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022037
V. Mishra, Mohd Raiz, N. Rao
{"title":"Dunkl analouge of Sz$ acute{a} $sz Schurer Beta bivariate operators","authors":"V. Mishra, Mohd Raiz, N. Rao","doi":"10.3934/mfc.2022037","DOIUrl":"https://doi.org/10.3934/mfc.2022037","url":null,"abstract":"<p style='text-indent:20px;'>The motive of this research article is to introduce a sequence of Sz<inline-formula><tex-math id=\"M2\">begin{document}$ acute{a}sz $end{document}</tex-math></inline-formula> Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B<inline-formula><tex-math id=\"M3\">begin{document}$ ddot{o} $end{document}</tex-math></inline-formula>gel space via mixed modulus of continuity.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"4 1","pages":"651-669"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78307449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Expression recognition method combining convolutional features and Transformer 结合卷积特征和Transformer的表情识别方法
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022018
Xiaoning Zhu, Zhongyi Li, Jian Sun
{"title":"Expression recognition method combining convolutional features and Transformer","authors":"Xiaoning Zhu, Zhongyi Li, Jian Sun","doi":"10.3934/mfc.2022018","DOIUrl":"https://doi.org/10.3934/mfc.2022018","url":null,"abstract":"Expression recognition has been an important research direction in the field of psychology, which can be used in traffic, medical, security, and criminal investigation by expressing human feelings through the muscles in the corners of the mouth, eyes, and face. Most of the existing research work uses convolutional neural networks (CNN) to recognize face images and thus classify expressions, which does achieve good results, but CNN do not have enough ability to extract global features. The Transformer has advantages for global feature extraction, but the Transformer is more computationally intensive and requires a large amount of training data. So, in this paper, we use the hierarchical Transformer, namely Swin Transformer, for the expression recognition task, and its computational power will be greatly reduced. At the same time, it is fused with a CNN model to propose a network architecture that combines the Transformer and CNN, and to the best of our knowledge, we are the first to combine the Swin Transformer with CNN and use it in an expression recognition task. We then evaluate the proposed method on some publicly available expression datasets and can obtain competitive results.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"284 1","pages":"203-217"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86744988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On Szász-Durrmeyer type modification using Gould Hopper polynomials 基于Gould Hopper多项式的Szász-Durrmeyer类型修正
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022011
Karunesh Singh, P. Agrawal
{"title":"On Szász-Durrmeyer type modification using Gould Hopper polynomials","authors":"Karunesh Singh, P. Agrawal","doi":"10.3934/mfc.2022011","DOIUrl":"https://doi.org/10.3934/mfc.2022011","url":null,"abstract":"In the present article, we study a generalization of Szász operators by Gould-Hopper polynomials. First, we obtain an estimate of error of the rate of convergence by these operators in terms of first order and second order moduli of continuity. Then, we derive a Voronovkaya-type theorem for these operators. Lastly, we derive Grüss-Voronovskaya type approximation theorem and Grüss-Voronovskaya type asymptotic result in quantitative form.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"87 1","pages":"123-135"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84420470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rates of weighted statistical convergence for a generalization of positive linear operators 正线性算子泛化的加权统计收敛率
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022059
Reyhan Canatan Ilbey, O. Dogru
{"title":"Rates of weighted statistical convergence for a generalization of positive linear operators","authors":"Reyhan Canatan Ilbey, O. Dogru","doi":"10.3934/mfc.2022059","DOIUrl":"https://doi.org/10.3934/mfc.2022059","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"100 1","pages":"427-438"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76257438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On approximation of unbounded functions by certain modified Bernstein operators 若干修正Bernstein算子对无界函数的逼近
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023014
R. Păltănea
{"title":"On approximation of unbounded functions by certain modified Bernstein operators","authors":"R. Păltănea","doi":"10.3934/mfc.2023014","DOIUrl":"https://doi.org/10.3934/mfc.2023014","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"5 1","pages":"512-519"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79628158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Ismail-Durrmeyer type operators involving Sheffer polynomials 涉及Sheffer多项式的广义Ismail-Durrmeyer型算子
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022064
P. Agrawal, Sompal Singh
{"title":"Generalized Ismail-Durrmeyer type operators involving Sheffer polynomials","authors":"P. Agrawal, Sompal Singh","doi":"10.3934/mfc.2022064","DOIUrl":"https://doi.org/10.3934/mfc.2022064","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70219305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smoothing piecewise linear activation functions based on mollified square root functions 基于平方根函数平滑分段线性激活函数
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023032
Tony Yuxiang Pan, Guangyu Yang, Junli Zhao, Jieyu Ding
{"title":"Smoothing piecewise linear activation functions based on mollified square root functions","authors":"Tony Yuxiang Pan, Guangyu Yang, Junli Zhao, Jieyu Ding","doi":"10.3934/mfc.2023032","DOIUrl":"https://doi.org/10.3934/mfc.2023032","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70220845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error analysis of classification learning algorithms based on LUMs loss 基于lum损失的分类学习算法误差分析
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022028
Xuqing He, Hongwei Sun
{"title":"Error analysis of classification learning algorithms based on LUMs loss","authors":"Xuqing He, Hongwei Sun","doi":"10.3934/mfc.2022028","DOIUrl":"https://doi.org/10.3934/mfc.2022028","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space <inline-formula><tex-math id=\"M1\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>, and the penalty term is denoted by the norm of the function in <inline-formula><tex-math id=\"M2\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer <inline-formula><tex-math id=\"M3\">begin{document}$ f_V $end{document}</tex-math></inline-formula> of the generalization error can be approximated by the hypothesis space <inline-formula><tex-math id=\"M4\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>, and by a leave one out variant technique proposed in [<xref ref-type=\"bibr\" rid=\"b13\">13</xref>], satisfying error bound and learning rate about the mean of excess classification error are deduced.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"78 1","pages":"616-624"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87095307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The family of $ lambda $-Bernstein-Durrmeyer operators based on certain parameters 基于某些参数的$ lambda $-Bernstein-Durrmeyer算子族
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022038
Ram Pratap
{"title":"The family of $ lambda $-Bernstein-Durrmeyer operators based on certain parameters","authors":"Ram Pratap","doi":"10.3934/mfc.2022038","DOIUrl":"https://doi.org/10.3934/mfc.2022038","url":null,"abstract":"<p style='text-indent:20px;'>The primary goal of this paper is to present the generalization of <inline-formula><tex-math id=\"M2\">begin{document}$ lambda $end{document}</tex-math></inline-formula>-Bernstein operators with the assistance of a sequence of operators proposed by Mache and Zhou [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>]. For these operators, I establish some approximation results using second-order modulus of continuity, Lipschitz space, Ditzian-Totik modulus of smoothness, and Voronovskaya type asymptotic results. I also indicate some graphical comparisons of my operators among existing operators for better presentation and justification using Matlab.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"10 1","pages":"546-557"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74024602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信