{"title":"Sz$ \\acute{a} $ Sz Schurer Beta二元算子的Dunkl模拟","authors":"V. Mishra, Mohd Raiz, N. Rao","doi":"10.3934/mfc.2022037","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The motive of this research article is to introduce a sequence of Sz<inline-formula><tex-math id=\"M2\">\\begin{document}$ \\acute{a}sz $\\end{document}</tex-math></inline-formula> Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B<inline-formula><tex-math id=\"M3\">\\begin{document}$ \\ddot{o} $\\end{document}</tex-math></inline-formula>gel space via mixed modulus of continuity.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dunkl analouge of Sz$ \\\\acute{a} $sz Schurer Beta bivariate operators\",\"authors\":\"V. Mishra, Mohd Raiz, N. Rao\",\"doi\":\"10.3934/mfc.2022037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The motive of this research article is to introduce a sequence of Sz<inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\acute{a}sz $\\\\end{document}</tex-math></inline-formula> Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B<inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\ddot{o} $\\\\end{document}</tex-math></inline-formula>gel space via mixed modulus of continuity.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4
摘要
The motive of this research article is to introduce a sequence of Sz\begin{document}$ \acute{a}sz $\end{document} Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B\begin{document}$ \ddot{o} $\end{document}gel space via mixed modulus of continuity.
Dunkl analouge of Sz$ \acute{a} $sz Schurer Beta bivariate operators
The motive of this research article is to introduce a sequence of Sz\begin{document}$ \acute{a}sz $\end{document} Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B\begin{document}$ \ddot{o} $\end{document}gel space via mixed modulus of continuity.