{"title":"矩阵方程对$ AX = C $, $ XB = D $的若干解的子矩阵结构","authors":"Radja Belkhiri, Sihem Guerarra","doi":"10.3934/mfc.2022023","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices <inline-formula><tex-math id=\"M3\">\\begin{document}$ X_{1}X_{1}^{\\ast}-P_{1} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ X_{2}X_{2}^{\\ast}-P_{1} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">\\begin{document}$ X_{3}X_{3}^{\\ast}-P_{2} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M6\">\\begin{document}$ X_{4}X_{4}^{\\ast }-P_{2} $\\end{document}</tex-math></inline-formula>, with respect to <inline-formula><tex-math id=\"M7\">\\begin{document}$ X_{1} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">\\begin{document}$ X_{2} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M9\">\\begin{document}$ X_{3} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">\\begin{document}$ X_{4} $\\end{document}</tex-math></inline-formula> respectively, where <inline-formula><tex-math id=\"M11\">\\begin{document}$ P_{1}\\in \\mathbb{C} ^{n_{1}\\times n_{1}} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">\\begin{document}$ P_{2}\\in \\mathbb{C} ^{n_{2}\\times n_{2}} $\\end{document}</tex-math></inline-formula> are given, <inline-formula><tex-math id=\"M13\">\\begin{document}$ X_{1} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M14\">\\begin{document}$ X_{2} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M15\">\\begin{document}$ X_{3} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M16\">\\begin{document}$ X_{4} $\\end{document}</tex-math></inline-formula> are submatrices in a general common solution <inline-formula><tex-math id=\"M17\">\\begin{document}$ X $\\end{document}</tex-math></inline-formula> to the paire of matrix equations <inline-formula><tex-math id=\"M18\">\\begin{document}$ AX = C $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M19\">\\begin{document}$ XB = D. $\\end{document}</tex-math></inline-formula></p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some structures of submatrices in solution to the paire of matrix equations $ AX = C $, $ XB = D $\",\"authors\":\"Radja Belkhiri, Sihem Guerarra\",\"doi\":\"10.3934/mfc.2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ X_{1}X_{1}^{\\\\ast}-P_{1} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ X_{2}X_{2}^{\\\\ast}-P_{1} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ X_{3}X_{3}^{\\\\ast}-P_{2} $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ X_{4}X_{4}^{\\\\ast }-P_{2} $\\\\end{document}</tex-math></inline-formula>, with respect to <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ X_{1} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ X_{2} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ X_{3} $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ X_{4} $\\\\end{document}</tex-math></inline-formula> respectively, where <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ P_{1}\\\\in \\\\mathbb{C} ^{n_{1}\\\\times n_{1}} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ P_{2}\\\\in \\\\mathbb{C} ^{n_{2}\\\\times n_{2}} $\\\\end{document}</tex-math></inline-formula> are given, <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ X_{1} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ X_{2} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ X_{3} $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M16\\\">\\\\begin{document}$ X_{4} $\\\\end{document}</tex-math></inline-formula> are submatrices in a general common solution <inline-formula><tex-math id=\\\"M17\\\">\\\\begin{document}$ X $\\\\end{document}</tex-math></inline-formula> to the paire of matrix equations <inline-formula><tex-math id=\\\"M18\\\">\\\\begin{document}$ AX = C $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M19\\\">\\\\begin{document}$ XB = D. $\\\\end{document}</tex-math></inline-formula></p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices \begin{document}$ X_{1}X_{1}^{\ast}-P_{1} $\end{document}, \begin{document}$ X_{2}X_{2}^{\ast}-P_{1} $\end{document}, \begin{document}$ X_{3}X_{3}^{\ast}-P_{2} $\end{document} and \begin{document}$ X_{4}X_{4}^{\ast }-P_{2} $\end{document}, with respect to \begin{document}$ X_{1} $\end{document}, \begin{document}$ X_{2} $\end{document}, \begin{document}$ X_{3} $\end{document} and \begin{document}$ X_{4} $\end{document} respectively, where \begin{document}$ P_{1}\in \mathbb{C} ^{n_{1}\times n_{1}} $\end{document}, \begin{document}$ P_{2}\in \mathbb{C} ^{n_{2}\times n_{2}} $\end{document} are given, \begin{document}$ X_{1} $\end{document}, \begin{document}$ X_{2} $\end{document}, \begin{document}$ X_{3} $\end{document} and \begin{document}$ X_{4} $\end{document} are submatrices in a general common solution \begin{document}$ X $\end{document} to the paire of matrix equations \begin{document}$ AX = C $\end{document}, \begin{document}$ XB = D. $\end{document}
Some structures of submatrices in solution to the paire of matrix equations $ AX = C $, $ XB = D $
The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices \begin{document}$ X_{1}X_{1}^{\ast}-P_{1} $\end{document}, \begin{document}$ X_{2}X_{2}^{\ast}-P_{1} $\end{document}, \begin{document}$ X_{3}X_{3}^{\ast}-P_{2} $\end{document} and \begin{document}$ X_{4}X_{4}^{\ast }-P_{2} $\end{document}, with respect to \begin{document}$ X_{1} $\end{document}, \begin{document}$ X_{2} $\end{document}, \begin{document}$ X_{3} $\end{document} and \begin{document}$ X_{4} $\end{document} respectively, where \begin{document}$ P_{1}\in \mathbb{C} ^{n_{1}\times n_{1}} $\end{document}, \begin{document}$ P_{2}\in \mathbb{C} ^{n_{2}\times n_{2}} $\end{document} are given, \begin{document}$ X_{1} $\end{document}, \begin{document}$ X_{2} $\end{document}, \begin{document}$ X_{3} $\end{document} and \begin{document}$ X_{4} $\end{document} are submatrices in a general common solution \begin{document}$ X $\end{document} to the paire of matrix equations \begin{document}$ AX = C $\end{document}, \begin{document}$ XB = D. $\end{document}