Journal of ecohydraulics最新文献

筛选
英文 中文
Stairs pipe culverts: flow simulations and implications for the passage of European and Neotropical fishes 楼梯管道涵洞:流动模拟和对欧洲和新热带鱼类通过的影响
Journal of ecohydraulics Pub Date : 2020-03-09 DOI: 10.1080/24705357.2020.1713918
H. Santos, E. Dupont, Francisco Aracena, Joseph T. Dvorak, A. Pinheiro, Matheus Teotonio, Ablail Paula
{"title":"Stairs pipe culverts: flow simulations and implications for the passage of European and Neotropical fishes","authors":"H. Santos, E. Dupont, Francisco Aracena, Joseph T. Dvorak, A. Pinheiro, Matheus Teotonio, Ablail Paula","doi":"10.1080/24705357.2020.1713918","DOIUrl":"https://doi.org/10.1080/24705357.2020.1713918","url":null,"abstract":"Abstract Culvert fishways can improve upstream fish passage in brooks and have been studied in relation to North American and Australian species. Research focusing on fish species from other world regions and, in parallel, effect of baffles on flow turbulence is rare. In this paper we present computational fluid dynamics of a sloped baffle culvert, called “stairs pipe”. We aimed at evaluating if: (1) the flow met the requirements of Neotropical and European species; (2) the flow turbulence was acceptable for fish passage; (3) the flow limited fish movements. The average flow velocities for 5% slope and discharge rates of 5–13 L/s were lower than the prolonged speeds of three Neotropical species, namely, piau (Leporinus reinhardti), mandi (Pimelodus maculatus), and lambari (Piabarchus stramineus) and higher than the sustainable speeds of three European species, namely, dace (Leuciscus leuciscus), barbel (Barbus barbus), and brown trout (Salmo trutta). The turbulence flow characteristics i.e. levels of turbulence kinetic energy were similar to those produced by comparable culverts but higher than those in a fish ladder. The water jet created by baffles at an angle of 30° can limit fish movements, restraining them from jumping. The stairs pipe might improve upstream fish movement in different regions of world; nevertheless, further experimental research should concern the use of different swimming modes in the culvert flow.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83522108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Fish guidance structures: hydraulic performance and fish guidance efficiencies 导鱼结构:水力性能和导鱼效率
Journal of ecohydraulics Pub Date : 2020-01-08 DOI: 10.1080/24705357.2019.1677181
I. Albayrak, R. Boes, C. R. Kriewitz-Byun, A. Peter, B. Tullis
{"title":"Fish guidance structures: hydraulic performance and fish guidance efficiencies","authors":"I. Albayrak, R. Boes, C. R. Kriewitz-Byun, A. Peter, B. Tullis","doi":"10.1080/24705357.2019.1677181","DOIUrl":"https://doi.org/10.1080/24705357.2019.1677181","url":null,"abstract":"Abstract The hydraulic performance and fish guidance efficiency (FGE) for behaviourally-based mechanical fish guidance structures, i.e. louvers and modified angled bar racks (MBRs), were evaluated experimentally and the results are presented herein. Detailed velocity profiling was conducted to assess the hydraulic performance of the 1:1 Froude-scaled racks in an etho-hydraulic laboratory flume. Guidance efficiencies of the studied rack configurations were evaluated through live-fish tests in the same flume. Tests were conducted with five European fish species, namely, barbel (Barbus barbus), spirlin (Alburnoides bipunctatus), European grayling (Thymallus thymallus), European eel (Anguilla anguilla) and brown trout (Salmo trutta). The results demonstrate that MBRs are advantageous over louvers because of reduced head losses, improved hydraulics and higher FGEs. Furthermore, use of a bottom overlay on the MBRs substantially increased the FGE. The results are discussed and compared with literature data. Recommendations for an optimized and economic MBR design are given. The present findings underpin the follow-up studies for further optimization of MBR design.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75984509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Ecohydraulic flumes: are we taking full advantage of their potential for symmetrical interdisciplinary research? 生态水力水槽:我们是否充分利用了它们在对称跨学科研究中的潜力?
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2020.1754553
C. Katopodis, P. Kemp
{"title":"Ecohydraulic flumes: are we taking full advantage of their potential for symmetrical interdisciplinary research?","authors":"C. Katopodis, P. Kemp","doi":"10.1080/24705357.2020.1754553","DOIUrl":"https://doi.org/10.1080/24705357.2020.1754553","url":null,"abstract":"Leading-edge biological research is thriving and so does advanced research on hydraulics, aided by innovations in technology, instrumentation and respective conventional experimental facilities in laboratories or field stations. In long-established fields, such as ecology and biology or hydraulics, hydrology and geomorphology, state-of-the-art research may be self-sufficient in experimental facilities. In newer interdisciplinary fields, like ecohydraulics, the challenge of conducting cuttingedge research necessitates using innovations and advances in more than one field. In addition, experimental facilities, such as ecohydraulic flumes, are needed to allow studies, measurements and integration of biotic and abiotic variables under controlled conditions. The question then becomes what the appropriate balance between “eco” and “hydraulics” is for leadingedge ecohydraulic research. One may posit that research with ecohydraulic flumes is thriving, at least if the rapid growth of relevant publications is indicative. As ecohydraulic researchers though, we are aware that many studies involving ecohydraulic flumes struggle to balance “eco” with “hydraulics,” and only a limited number achieve suitable symmetry. It takes fully engaged interdisciplinary teams, using state-of-the-art technology, instrumentation, experimental facilities, analyses and integration of observations to reach ecohydraulic symmetry with interdisciplinarity as the overriding principle for all research aspects. How frequently does this actually happen? Ecohydraulic flumes, which have a water surface open to air pressure (as opposed to closed chambers with fluid pressure), facilitate research which integrates ecological/biological and hydraulic/morphodynamic aspects. Such flumes may be fixed or mobile, are used in laboratories or field stations, and are designed for the purpose of studying abilities and responses of aquatic flora and fauna to hydraulic/morphodynamic conditions in prototype to avoid scaling effects on biota and their behaviour (Katopodis 2005). Research on flora and fauna under controlled conditions in ecohydraulic flumes, contributes to improved understanding of the complex interactions between biota and hydraulic variables. Although in recent decades ecohydraulic flumes have been used for research on a variety of flora and fauna, different fish species have been the most common biota studied. The Fisheries-Engineering Research Laboratory adjacent to a fishway at Bonneville Dam was one of the first dedicated to ecohydraulic research on fish passage mostly for anadromous Pacific salmon relating to the hydroelectric generating stations on the Columbia River, USA (Collins and Elling 1960). Without fish tagging technology or videography, and simple hydrometric instruments, observations on fish behavioural responses and swimming performance were limited to average values of basic variables such as velocities, rates of fish movement, endurance times and swim distances. Aspec","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86158283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effects of interlocked carpet ramps on upstream movement of brown trout Salmo trutta in an upland stream 互锁的地毯坡道对高原溪流中褐鳟上游运动的影响
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2019.1581102
K. Plesiński, C. Gibbins, A. Radecki-Pawlik
{"title":"Effects of interlocked carpet ramps on upstream movement of brown trout Salmo trutta in an upland stream","authors":"K. Plesiński, C. Gibbins, A. Radecki-Pawlik","doi":"10.1080/24705357.2019.1581102","DOIUrl":"https://doi.org/10.1080/24705357.2019.1581102","url":null,"abstract":"Abstract This paper assesses the extent to which Interlocked Carpet Block Ramps (ICBRs) impede the upstream movement of brown trout Salmon trutta (L. 1758). It presents model simulations of hydraulic conditions across an ICBR of the type used widely for energy dissipation in high gradient rivers. Model simulations were related to published hydraulic suitability criteria for upstream movement of fish to assess the usability of individual routes, connectivity between routes and whether routes were available to allow upstream passage across the whole ramp. Results suggest that connected routes were available at most of the simulated discharges. Nevertheless, higher and lower discharges appeared to impose constraints, due to swimming ability and minimum useable water depths, respectively. Precise patterns of hydraulic suitability and connectivity of potential routes at different discharges varied appreciably between simulations using the different hydraulic criteria.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88519257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Implications of environmental conditions for health status and biomechanics of freshwater macrophytes in hydraulic laboratories 环境条件对水工实验室淡水大型植物健康状况和生物力学的影响
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2019.1669496
D. Vettori, S. Rice
{"title":"Implications of environmental conditions for health status and biomechanics of freshwater macrophytes in hydraulic laboratories","authors":"D. Vettori, S. Rice","doi":"10.1080/24705357.2019.1669496","DOIUrl":"https://doi.org/10.1080/24705357.2019.1669496","url":null,"abstract":"Abstract Submerged freshwater macrophytes are frequently used in hydraulic laboratories to study flow–plant interactions and the role of plants in aquatic ecosystems, but environmental conditions in flume facilities are often suboptimal for plants and can cause plant stress. Physiological responses of plants under stress can trigger modifications in plant biomechanics, which may affect plant–flow interactions and compromise experimental results. In the extreme, dead plants cannot be expected to reveal how live plants interact with flowing water, but stressed plants that are not visibly unhealthy may also affect experimental results. The present work aims to assess if and how environmental conditions typical of flume facilities can impact plant health status and induce variations in plant biomechanics. Using chlorophyll fluorescence analysis, a standard method for assessing plant health, we found that freshwater macrophytes can be significantly stressed under conditions typically found in hydraulic laboratories. Even though the abiotic factors investigated affected different species in different ways, exposure to tap water and low irradiance were the most stressful conditions for freshwater macrophytes. Biomechanical properties with a primary role in flow–plant physical interactions (e.g. flexural rigidity) changed significantly as a result of exposure to stressful conditions. In general, plant stress was associated with a reduction in flexural rigidity at the top of plant stems, suggesting a potential effect on plant hydrodynamics when leaves and petioles are considered. The maximum quantum yield of photosystem II, used as proxy of plant health status, was positively correlated with flexural rigidity of plant stems.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73571707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Laboratory testing of an innovative tube fishway concept 一个创新的管鱼道概念的实验室测试
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2019.1673673
J. Harris, W. Peirson, B. Mefford, R. Kingsford, S. Felder
{"title":"Laboratory testing of an innovative tube fishway concept","authors":"J. Harris, W. Peirson, B. Mefford, R. Kingsford, S. Felder","doi":"10.1080/24705357.2019.1673673","DOIUrl":"https://doi.org/10.1080/24705357.2019.1673673","url":null,"abstract":"Abstract Effective fishways are required for restoring fish migrations and reversing worldwide declines in freshwater fish while making sustainable use of water resources. Mitigation of barrier effects at high-head dams and weirs is often impeded by poor fishway performance and high costs. Improved and less-costly designs are urgently needed. Our innovative tube fishway concept combines established fishways techniques with aquaculture’s pumping methods and fish-behaviour insights for safe upstream fish passage. We experimented with scaled-down fishway designs using juvenile Australian bass (Percalates novemaculeata). An experimental horizontal-cylinder design successfully combined volitional-passage functions of existing fishways with non-volitional transfer using pumped water. Three key principles of fish behaviour in fishways led to design improvements: disturbed fish often seek refuge at depth; fishes’ escape reactions strongly motivate swimming into flows; and curved structures can reduce delays. In nine trials of the best fishway design, 44 of 45 Australian bass passed within 50 min. cycles. The tube fishway concept offers potential for effective upstream fish passage at new and existing barriers >∼2 m high, with low construction and operation costs and capacity to operate in variable flow regimes. Further development is proceeding with larger-scale laboratory trials, an innovative pumping system and more species.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86001011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
The effect of instream logs on bank erosion potential: a flume study with multiple logs 河流对数对河岸侵蚀潜力的影响:多对数水槽研究
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2019.1669495
N. Zhang, I. Rutherfurd, M. Ghisalberti
{"title":"The effect of instream logs on bank erosion potential: a flume study with multiple logs","authors":"N. Zhang, I. Rutherfurd, M. Ghisalberti","doi":"10.1080/24705357.2019.1669495","DOIUrl":"https://doi.org/10.1080/24705357.2019.1669495","url":null,"abstract":"Abstract Riparian trees can reduce bank erosion rates, but once a tree falls into a river it can increase local bank erosion. However, the influence of multiple logs, that hydraulically interact, on near-bank velocities has not been investigated. This paper reports flume experiments of the near-bank velocity changes and water level changes produced by multiple in-stream logs with equal and unequal spacing. The results suggest that the near-bank velocity increase caused by a single log can be reduced, and even reversed, by multiple logs. This reduced near-bank velocity mainly results from wake interference between the logs, rather than from the effect of backwater, and it varies systematically with the spacing between the logs. Bank erosion potential can be reduced where logs are spaced under 17 root-plate diameters and where the root-plate is located close to the bank. By contrast, the logs are likely to increase bank erosion when they are within an intermediate distance from the bank and are closely spaced (under 3.3 root-plate diameters apart). The flume results allow us to explore the temporal changes of the potential bank erosion in a reach with various log distributions.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83185576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Swimming performance of Arctic grayling (Thymallus arcticus Pallas) in an open-channel flume 北极灰鲑(thyymallus arcticus Pallas)在明渠水槽中的游泳表现
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2019.1599306
David R. Dockery, Erin Ryan, K. Kappenman, Matt Blank
{"title":"Swimming performance of Arctic grayling (Thymallus arcticus Pallas) in an open-channel flume","authors":"David R. Dockery, Erin Ryan, K. Kappenman, Matt Blank","doi":"10.1080/24705357.2019.1599306","DOIUrl":"https://doi.org/10.1080/24705357.2019.1599306","url":null,"abstract":"Abstract Installing effective fish passage structures that provide connectivity for Arctic grayling is a promising conservation strategy for imperiled populations. The swimming abilities and behaviour of age 1+ adfluvial grayling from Montana were examined in an open-channel flume to provide design information for passage structures. Swimming behaviours and distance of ascent (Dmax) in a 12.25 m section was measured at four velocities (0.49, 1.04, 1.43, 2.26 m/s) at an average temperature of 11.3 °C (SD = 0.7); effects of fish length and time of day were also examined. Median Dmax was equal to 12.25 m for all treatments except the 2.26 m/s treatment, where it dropped to 4.5 m. Average fish swimming velocities increased from 0.85 to 2.97 m/s from the lowest to the highest velocity treatments and the maximum velocity observed was 4.03 m/s. Survival model parameterization allowed prediction of the proportion passing relative to distance for covariate values within the range tested. There was strong evidence Dmax was related to water velocity (p < 0.001) and an 82% decrease in Dmax is estimated for every 1 m/s increase in water velocity. There was no evidence for relationships among distance of ascent and fish length (p = 0.91) or time of day (p = 0.81).","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84414660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Hydraulic design aspects of rock-weir fishways with notch for habitat connectivity 带槽口的岩堰鱼道的水力设计
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2019.1652706
A. Baki, D. Zhu, A. Harwood, A. Lewis, Katie Healey
{"title":"Hydraulic design aspects of rock-weir fishways with notch for habitat connectivity","authors":"A. Baki, D. Zhu, A. Harwood, A. Lewis, Katie Healey","doi":"10.1080/24705357.2019.1652706","DOIUrl":"https://doi.org/10.1080/24705357.2019.1652706","url":null,"abstract":"Abstract Nature-like fishways have been installed at many migration barriers in recent years to mitigate the effects of human development and habitat fragmentation on fish. The design of these fishways determines the flow characteristics and ultimately the success of these passage facilities. This study numerically investigates the hydraulic properties associated with small passage openings (notch) that are provided in rock-weir-type fishways. Two distinct flow regimes, weir and transitional, were identified. The rock-weir with notch ensured suitable hydraulics for fish migration and sufficient fish resting areas in weir pools. A dimensionless weir coefficient was introduced to existing depth–discharge relationships to compute the weir flow more accurately. A reduction factor for the maximum velocity was also proposed as a function of discharge. This study optimized the design of rock-weir fishways considering passage notches based on fish resting zones, volumetric dissipated power, and performance for upstream fish migration.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89163993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Effect of instream logs on bank erosion potential: a flume study with a single log 河流原木对河岸侵蚀潜力的影响:用单个原木进行的水槽研究
Journal of ecohydraulics Pub Date : 2020-01-02 DOI: 10.1080/24705357.2019.1634499
Nuosha Zhang, I. Rutherfurd, M. Ghisalberti
{"title":"Effect of instream logs on bank erosion potential: a flume study with a single log","authors":"Nuosha Zhang, I. Rutherfurd, M. Ghisalberti","doi":"10.1080/24705357.2019.1634499","DOIUrl":"https://doi.org/10.1080/24705357.2019.1634499","url":null,"abstract":"Abstract It is well established that riparian trees reduce bank erosion. However, fallen trees can increase bank erosion as the flow is deflected and accelerated between the log and its root-plate and the bank face, increasing the boundary shear stress and eroding the bank. This erosion contributes to hydraulic variability but can also be a concern in restoring wood loads in rivers. In this first quantitative study into this phenomenon, we develop a theoretical hydraulic model to estimate the near-bank velocity around a single log using principles of continuity and energy loss for a range of log characteristics (morphology, angle, distance from the bank) and flow characteristics. Flume experiments support the theoretical model and suggest that a single log can almost double the near-bank velocity. The fractional channel area taken up by the log (blockage ratio) and the distance between the log and the bank are key factors governing the near-bank velocity. The smaller the angle of the log with the bank the lower the erosion rate, but also the further downstream the erosion extends. As the morphology of the log changes after falling into the channel, bank erosion potentially develops quickly, but slows over time; and migrates downstream.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89431972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信