A case-study evaluating river rehabilitation alternatives and habitat heterogeneity using the hydromorphological index of diversity

IF 4.6 Q2 ENVIRONMENTAL SCIENCES
W. Gostner, W. Annable, Anton Schleiss, M. Paternolli
{"title":"A case-study evaluating river rehabilitation alternatives and habitat heterogeneity using the hydromorphological index of diversity","authors":"W. Gostner, W. Annable, Anton Schleiss, M. Paternolli","doi":"10.1080/24705357.2019.1680320","DOIUrl":null,"url":null,"abstract":"Abstract Concurrent rehabilitation alternatives were evaluated for a 1900 m reach of the River Etsch in northern Italy using a recently developed Hydro Morphological Index of Diversity (HMID) model. HMID is a new tool enabling quantitative assessments of river restoration alternatives on ecologically relevant scales. The model is able to characterize both the spatial and temporal hydrodynamic variability, in relation to morphological characteristics, and thereby to assess the overall physical habitat variability imparted by different restoration alternatives. Three habitat alternatives were evaluated (boulder clusters, groynes, alternating bars) and compared to existing conditions where a prismatic channel exists. The placement of boulder clusters represented the simplest and cheapest option to implement but produced marginal improvements in the aquatic habitat. Installation of groynes resulted in moderate increases to spatial habitat variability, resulting in the largest capital investment. The introduction of alternating bars within a modestly increased channel width produced the greatest increase in physical habitat diversity and thus morphodynamic complexity while resulting in moderate capital investment construction costs compared to a full geomorphic restoration. The alternating bar rehabilitation alternative also supported the greatest habitat diversity and lowest variation in hydraulic conditions under low-flow conditions.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2019.1680320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Concurrent rehabilitation alternatives were evaluated for a 1900 m reach of the River Etsch in northern Italy using a recently developed Hydro Morphological Index of Diversity (HMID) model. HMID is a new tool enabling quantitative assessments of river restoration alternatives on ecologically relevant scales. The model is able to characterize both the spatial and temporal hydrodynamic variability, in relation to morphological characteristics, and thereby to assess the overall physical habitat variability imparted by different restoration alternatives. Three habitat alternatives were evaluated (boulder clusters, groynes, alternating bars) and compared to existing conditions where a prismatic channel exists. The placement of boulder clusters represented the simplest and cheapest option to implement but produced marginal improvements in the aquatic habitat. Installation of groynes resulted in moderate increases to spatial habitat variability, resulting in the largest capital investment. The introduction of alternating bars within a modestly increased channel width produced the greatest increase in physical habitat diversity and thus morphodynamic complexity while resulting in moderate capital investment construction costs compared to a full geomorphic restoration. The alternating bar rehabilitation alternative also supported the greatest habitat diversity and lowest variation in hydraulic conditions under low-flow conditions.
利用水文形态多样性指数评价河流修复方案和生境异质性的实例研究
利用最近开发的水文形态多样性指数(HMID)模型,对意大利北部埃奇河1900 m河段的并行修复方案进行了评估。HMID是一种新的工具,可以在生态相关尺度上定量评估河流恢复方案。该模型能够描述与形态特征相关的空间和时间水动力变异性,从而评估不同恢复方案所赋予的总体自然生境变异性。评估了三种栖息地选择(巨石群,砾石,交替沙洲),并比较了棱柱状通道存在的现有条件。巨石群的放置是最简单和最便宜的选择,但对水生栖息地的改善甚微。石坝的安装导致空间生境变异性的适度增加,导致最大的资本投资。在适度增加的河道宽度内引入交替沙洲,最大程度地增加了自然栖息地的多样性,从而增加了形态动力学的复杂性,同时与完全的地貌恢复相比,造成了适度的资本投资建设成本。在低流量条件下,交替沙坝修复方案也支持最大的生境多样性和最低的水力条件变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信