Bioengineering & Translational Medicine最新文献

筛选
英文 中文
Siglec15/TGF-β bispecific antibody mediates synergistic anti-tumor response against 4T1 triple negative breast cancer in mice Siglec15/TGF-β 双特异性抗体介导小鼠对 4T1 三阴性乳腺癌的协同抗肿瘤反应
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-03-11 DOI: 10.1002/btm2.10651
Limei Shen, Alison M. Schaefer, Karthik Tiruthani, Whitney Wolf, Samuel K. Lai
{"title":"Siglec15/TGF-β bispecific antibody mediates synergistic anti-tumor response against 4T1 triple negative breast cancer in mice","authors":"Limei Shen,&nbsp;Alison M. Schaefer,&nbsp;Karthik Tiruthani,&nbsp;Whitney Wolf,&nbsp;Samuel K. Lai","doi":"10.1002/btm2.10651","DOIUrl":"10.1002/btm2.10651","url":null,"abstract":"<p>An ideal tumor-specific immunomodulatory therapy should both preferentially target the tumor, while simultaneously reduce the immunosuppressive environment within the tumor. This guiding principle led us to explore engineering Siglec-15 (S15) targeted bispecific antibody (bsAb) to enhance therapy against triple negative breast cancer (TNBC). S15 appears to be exclusively expressed on macrophages and diverse tumor cells, including human and mouse 4T1 TNBC. TGF-β is a growth hormone frequently associated with increased tumor invasiveness, including in TNBC. Here, to overcome the immune-suppressive environment within TNBC tumors to enable more effective cancer therapy, we engineered a bispecific antibody (bsAb) targeting both Siglec15 and TGF-β. In mice engrafted with orthotopic 4T1 tumors, S15/TGF-β bsAb treatment was highly effective in suppressing tumor growth, not only compared to control monoclonal antibody (mAb) but also markedly more effective than mAbs against S15 alone, against TGF-β alone, as well as a cocktail of both anti-S15 and anti-TGF-β mAbs. We did not detect liver and lung metastasis in mice treated with S15/TGF-β bsAb, unlike all other treatment groups at the end of the study. The enhanced anti-tumor response observed with S15/TGF-β bsAb correlated with a less immunosuppressive environment in the tumor. These results underscore S15-targeted bsAb as a promising therapeutic strategy for TNBC, and possibly other S15 positive solid tumors.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Primary T-cell-based delivery platform for in vivo synthesis of engineered proteins” 对 "基于初级 T 细胞的体内合成工程蛋白质的输送平台 "的更正
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-03-10 DOI: 10.1002/btm2.10658
{"title":"Correction to “Primary T-cell-based delivery platform for in vivo synthesis of engineered proteins”","authors":"","doi":"10.1002/btm2.10658","DOIUrl":"10.1002/btm2.10658","url":null,"abstract":"<p>Radhakrishnan H, Newmyer SL, Ssemadaali MA, Javitz HS, Bhatnagar P. Primary T-cell-based delivery platform for in vivo synthesis of engineered proteins. Bioeng Transl Med. 2024; 9(1):e10605. doi:10.1002/btm2.10605</p><p><b>4.10 In vivo validation of delivery function of the engineered T cells (engineered for delivery function with NFAT-RE delivery system).</b> The in vivo validation of our T-cell based delivery system was performed in mice at SRI International in accordance with the guidelines from the Institutional Animal Care and Use Committee (Approval # 22001). Six- to 8-week-old female NOD.Cg-Prkdc<sup>scid</sup> Il2rg<sup>tm1Wjl</sup>/SzJ (NSG) mice were purchased from The Jackson Laboratory. After mandatory quarantine, the NSG mice were anesthetized and 2 × 10<sup>6</sup> FRα<sup>+</sup>Luc2-2A-E2Crimson<sup>+</sup>A2780cis cells in 100 μL 1× PBS were i.p. implanted. The tumor growth was monitored every 3–4 days for the next 12 days using i.p. injected 150 mg <span>d</span>-Luciferin per kg of mouse dissolved in 1× PBS. At 11 days after implantation, the mice were randomized into two groups (<i>n</i> = 5 each). The two groups were then treated with 2 × 10<sup>6</sup> primary CD4 T cells engineered for delivery function (i.e., FRα-CAR with NFAT-RE inducible Nluc reporter) or the control primary CD4 T cells (FRα-CAR only, i.e., without NFAT-RE inducible Nluc reporter) every day for 5 days. The bioluminescent reporter (Nluc) activity was determined by i.p. injection of the Nano-Glo® substrate (1:20 dilution of the substrate in 1× PBS, equivalent to 0.5 mg per kg of mouse) on Days 0, 1, 2, 3, 4, and 5 after treatment. Imaging was performed in a IVIS Lumina X5 imaging system. The data were quantified by analysis of the ROI using Living Image software. The tumor luminescence is plotted as the mean ± SEM of total flux (photons/s) against days after treatment.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10658","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supramolecular dye nanoassemblies for advanced diagnostics and therapies 用于先进诊断和治疗的超分子染料纳米组合体
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-02-13 DOI: 10.1002/btm2.10652
Pouria Ramezani, Stefaan C. De Smedt, Félix Sauvage
{"title":"Supramolecular dye nanoassemblies for advanced diagnostics and therapies","authors":"Pouria Ramezani,&nbsp;Stefaan C. De Smedt,&nbsp;Félix Sauvage","doi":"10.1002/btm2.10652","DOIUrl":"10.1002/btm2.10652","url":null,"abstract":"<p>Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10652","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139739628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering a “muco-trapping” ACE2-immunoglobulin hybrid with picomolar affinity as an inhaled, pan-variant immunotherapy for COVID-19 设计一种具有皮摩尔亲和力的 "粘液捕获 "ACE2-免疫球蛋白混合物,作为吸入式泛变异免疫疗法治疗 COVID-19
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-02-07 DOI: 10.1002/btm2.10650
Karthik Tiruthani, Carlos Cruz-Teran, Jasper F. W. Chan, Alice Ma, Morgan McSweeney, Whitney Wolf, Shoufeng Yuan, Vincent K. M. Poon, Chris C. S. Chan, Lakshmi Botta, Brian Farrer, Ian Stewart, Alison Schaefer, Jasmine Edelstein, Priya Kumar, Harendra Arora, Jeff T. Hutchins, Anthony J. Hickey, Kwok-Yung Yuen, Samuel K. Lai
{"title":"Engineering a “muco-trapping” ACE2-immunoglobulin hybrid with picomolar affinity as an inhaled, pan-variant immunotherapy for COVID-19","authors":"Karthik Tiruthani,&nbsp;Carlos Cruz-Teran,&nbsp;Jasper F. W. Chan,&nbsp;Alice Ma,&nbsp;Morgan McSweeney,&nbsp;Whitney Wolf,&nbsp;Shoufeng Yuan,&nbsp;Vincent K. M. Poon,&nbsp;Chris C. S. Chan,&nbsp;Lakshmi Botta,&nbsp;Brian Farrer,&nbsp;Ian Stewart,&nbsp;Alison Schaefer,&nbsp;Jasmine Edelstein,&nbsp;Priya Kumar,&nbsp;Harendra Arora,&nbsp;Jeff T. Hutchins,&nbsp;Anthony J. Hickey,&nbsp;Kwok-Yung Yuen,&nbsp;Samuel K. Lai","doi":"10.1002/btm2.10650","DOIUrl":"10.1002/btm2.10650","url":null,"abstract":"<p>Soluble angiotensin-converting enzyme 2 (ACE2) can act as a decoy molecule that neutralizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by blocking spike (S) proteins on virions from binding ACE2 on host cells. Based on structural insights of ACE2 and S proteins, we designed a “muco-trapping” ACE2-Fc conjugate, termed ACE2-(G<sub>4</sub>S)<sub>6</sub>-Fc, comprised of the extracellular segment of ACE2 (lacking the C-terminal collectrin domain) that is linked to mucin-binding IgG1-Fc via an extended glycine-serine flexible linker. ACE2-(G<sub>4</sub>S)<sub>6</sub>-Fc exhibits substantially greater binding affinity and neutralization potency than conventional full length ACE2-Fc decoys or similar truncated ACE2-Fc decoys without flexible linkers, possessing picomolar binding affinity and strong neutralization potency against pseudovirus and live virus. ACE2-(G<sub>4</sub>S)<sub>6</sub>-Fc effectively trapped fluorescent SARS-CoV-2 virus like particles in fresh human airway mucus and was stably nebulized using a commercial vibrating mesh nebulizer. Intranasal dosing of ACE2-(G<sub>4</sub>S)<sub>6</sub>-Fc in hamsters as late as 2 days postinfection provided a 10-fold reduction in viral load in the nasal turbinate tissues by Day 4. These results strongly support further development of ACE2-(G<sub>4</sub>S)<sub>6</sub>-Fc as an inhaled immunotherapy for COVID-19, as well as other emerging viruses that bind ACE2 for cellular entry.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10650","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-dependent improvement in traumatic brain injury outcomes after liposomal delivery of dexamethasone in mice 脂质体给药地塞米松对小鼠脑外伤结果的改善与性别有关
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-02-04 DOI: 10.1002/btm2.10647
Gherardo Baudo, Hannah Flinn, Morgan Holcomb, Anjana Tiwari, Sirena Soriano, Francesca Taraballi, Biana Godin, Assaf Zinger, Sonia Villapol
{"title":"Sex-dependent improvement in traumatic brain injury outcomes after liposomal delivery of dexamethasone in mice","authors":"Gherardo Baudo,&nbsp;Hannah Flinn,&nbsp;Morgan Holcomb,&nbsp;Anjana Tiwari,&nbsp;Sirena Soriano,&nbsp;Francesca Taraballi,&nbsp;Biana Godin,&nbsp;Assaf Zinger,&nbsp;Sonia Villapol","doi":"10.1002/btm2.10647","DOIUrl":"10.1002/btm2.10647","url":null,"abstract":"<p>Traumatic brain injury (TBI) can have long-lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas. To address this issue, we have developed a liposomal nanocarrier (Lipo) encapsulating dexamethasone (Dex), an agonist for the glucocorticoid receptor utilized to alleviate inflammation and swelling in various conditions. In vitro studies show that Lipo-Dex were well tolerated in human and murine neural cells. Lipo-Dex showed significant suppression of inflammatory cytokines, IL-6 and TNF-α, release after induction of neural inflammation with lipopolysaccharide. Further, the Lipo-Dex were administered to young adult male and female C57BL/6 mice immediately after controlled cortical impact injury (a TBI model). Our findings demonstrate that Lipo-Dex can selectively target the injured brain, thereby reducing lesion volume, cell death, astrogliosis, the release of pro-inflammatory cytokines, and microglial activation compared to Lipo-treated mice in a sex-dependent manner, showing a major impact only in male mice. This highlights the importance of considering sex as a crucial variable in developing and evaluating new nano-therapies for brain injury. These results suggest that Lipo-Dex administration may effectively treat acute TBI.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10647","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold 从枸杞中提取的植物源外泌体富含isisiquiritigenin,可促进基于3D打印仿生支架的脊髓损伤修复
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-01-30 DOI: 10.1002/btm2.10646
Qilong Wang, Kai Liu, Xia Cao, Wanjin Rong, Wenwan Shi, Qintong Yu, Wenwen Deng, Jiangnan Yu, Ximing Xu
{"title":"Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold","authors":"Qilong Wang,&nbsp;Kai Liu,&nbsp;Xia Cao,&nbsp;Wanjin Rong,&nbsp;Wenwan Shi,&nbsp;Qintong Yu,&nbsp;Wenwen Deng,&nbsp;Jiangnan Yu,&nbsp;Ximing Xu","doi":"10.1002/btm2.10646","DOIUrl":"10.1002/btm2.10646","url":null,"abstract":"<p>Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, <i>Lycium barbarum</i> L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from <i>L. barbarum</i> L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140483465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial-mesenchymal transition in skeletal muscle: Opportunities and challenges from 3D microphysiological systems 骨骼肌的内皮-间充质转化:三维微观生理系统带来的机遇和挑战
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-01-29 DOI: 10.1002/btm2.10644
Riccardo Francescato, Matteo Moretti, Simone Bersini
{"title":"Endothelial-mesenchymal transition in skeletal muscle: Opportunities and challenges from 3D microphysiological systems","authors":"Riccardo Francescato,&nbsp;Matteo Moretti,&nbsp;Simone Bersini","doi":"10.1002/btm2.10644","DOIUrl":"10.1002/btm2.10644","url":null,"abstract":"<p>Fibrosis is a pathological condition that in the muscular context is linked to primary diseases such as dystrophies, laminopathies, neuromuscular disorders, and volumetric muscle loss following traumas, accidents, and surgeries. Although some basic mechanisms regarding the role of myofibroblasts in the progression of muscle fibrosis have been discovered, our knowledge of the complex cell–cell, and cell–matrix interactions occurring in the fibrotic microenvironment is still rudimentary. Recently, vascular dysfunction has been emerging as a key hallmark of fibrosis through a process called endothelial-mesenchymal transition (EndoMT). Nevertheless, no effective therapeutic options are currently available for the treatment of muscle fibrosis. This lack is partially due to the absence of advanced in vitro models that can recapitulate the 3D architecture and functionality of a vascularized muscle microenvironment in a human context. These models could be employed for the identification of novel targets and for the screening of potential drugs blocking the progression of the disease. In this review, we explore the potential of 3D human muscle models in studying the role of endothelial cells and EndoMT in muscle fibrotic tissues and identify limitations and opportunities for optimizing the next generation of these microphysiological systems. Starting from the biology of muscle fibrosis and EndoMT, we highlight the synergistic links between different cell populations of the fibrotic microenvironment and how to recapitulate them through microphysiological systems.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10644","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140488264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tricaprylin-based drug crystalline suspension for intramuscular long-acting delivery of entecavir with alleviated local inflammation 基于三杓霉素的药物晶体混悬液,用于肌肉注射长效给药恩替卡韦并缓解局部炎症
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-01-29 DOI: 10.1002/btm2.10649
Min Young Jeong, Myoung Jin Ho, Joon Soo Park, Hoetaek Jeong, Jin Hee Kim, Yong Jin Jang, Doe Myung Shin, In Gyu Yang, Hye Rim Kim, Woo Heon Song, Sangkil Lee, Seh Hyon Song, Yong Seok Choi, Young Taek Han, Myung Joo Kang
{"title":"Tricaprylin-based drug crystalline suspension for intramuscular long-acting delivery of entecavir with alleviated local inflammation","authors":"Min Young Jeong,&nbsp;Myoung Jin Ho,&nbsp;Joon Soo Park,&nbsp;Hoetaek Jeong,&nbsp;Jin Hee Kim,&nbsp;Yong Jin Jang,&nbsp;Doe Myung Shin,&nbsp;In Gyu Yang,&nbsp;Hye Rim Kim,&nbsp;Woo Heon Song,&nbsp;Sangkil Lee,&nbsp;Seh Hyon Song,&nbsp;Yong Seok Choi,&nbsp;Young Taek Han,&nbsp;Myung Joo Kang","doi":"10.1002/btm2.10649","DOIUrl":"10.1002/btm2.10649","url":null,"abstract":"<p>In order to ensure prolonged pharmacokinetic profile along with local tolerability at the injection site, tricaprylin-based drug crystalline suspension (TS) was designed and its local distribution, pharmacokinetics, and inflammatory response, were evaluated with conventional aqueous suspension (AS). As model drug particles, entecavir 3-palmitate (EV-P), an ester lipidic prodrug for entecavir (EV), was employed. The EV-P-loaded TS was prepared by ultra-sonication method. Prepared TS and conventional AS exhibited comparable morphology (rod or rectangular), median diameter (2.7 and 2.6 μm), crystallinity (melting point of 160–165°C), and in vitro dissolution profile. However, in vivo performances of drug microparticles were markedly different, depending on delivery vehicle. At AS-injected site, drug aggregates of up to 500 μm were formed upon intramuscular injection, and were surrounded with inflammatory cells and fibroblastic bands. In contrast, no distinct particle aggregation and adjacent granulation was observed at TS-injected site, with &gt;4 weeks remaining of the oily vehicle in micro-computed tomographic observation. Surprisingly, TS exhibited markedly alleviated local inflammation compared to AS, endowing markedly lessened necrosis, fibrosis thickness, inflammatory area, and macrophage infiltration. The higher initial systemic exposure was observed with TS compared to AS, but TS provided prolonged delivery of EV for 3 weeks. Therefore, we suggest that the novel TS system can be a promising tool in designing parenteral long-acting delivery, with improved local tolerability.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10649","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered in vivo and in vitro tumor model recapitulates vasculogenic mimicry signatures in melanoma 设计的体内和体外肿瘤模型再现了黑色素瘤的血管生成模拟特征
IF 6.1 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-01-27 DOI: 10.1002/btm2.10648
Qizhi Shuai, Xinrui Xu, Yuxiang Liang, Zulala Halbiyat, Xin Lu, Zixuan Hu, Zhiwei Peng, Jie An, Zhiwei Feng, Tingjuan Huang, Hong Zhao, Zhizhen Liu, Jun Xu, Jun Xie
{"title":"Engineered in vivo and in vitro tumor model recapitulates vasculogenic mimicry signatures in melanoma","authors":"Qizhi Shuai,&nbsp;Xinrui Xu,&nbsp;Yuxiang Liang,&nbsp;Zulala Halbiyat,&nbsp;Xin Lu,&nbsp;Zixuan Hu,&nbsp;Zhiwei Peng,&nbsp;Jie An,&nbsp;Zhiwei Feng,&nbsp;Tingjuan Huang,&nbsp;Hong Zhao,&nbsp;Zhizhen Liu,&nbsp;Jun Xu,&nbsp;Jun Xie","doi":"10.1002/btm2.10648","DOIUrl":"10.1002/btm2.10648","url":null,"abstract":"<p>Vasculogenic mimicry (VM) describes a process by which tumor cells formed a novel microcirculation pattern in an endothelial cell-free manner. Clinically, VM is associated with aggressive phenotype and poor patient survival. However, the current models for investigating VM include 2D monolayer cultures, Matrigel-based cultures, and animal models, each of which has limitations. Matrigel-based models often exhibit batch-to-batch variations, while in vivo tumor models currently produce insufficient amounts of VM. There is currently no suitable tumor model to discover new therapeutic targets against VM. Herein, we establish an extracellular matrix (ECM)-based engineered tumor model in vivo and in vitro. In this study, we demonstrate that matrix proteins enhanced the VM formation in the engineered xenograft model. Furthermore, we also investigated the role of collagen/fibronectin (FN) in melanoma progression and VM formation. Compared with cells cultured on TCPS plates, the B16F10 cells cultured on collagen/FN coated plates showed increased proliferation and stemness, and significantly enhanced invasion and formation of VM networks. Molecular mechanism analysis showed that Integrin/VE-cadherin/EphA2/PI3K/MMP-2 signaling pathways are responsible for VM formation. Our results indicate that collagen/FN matrix plays an important role in VM formation in melanoma, suggesting that ECM protein is a potential therapeutic target for anti-VM therapy for melanoma.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10648","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139568128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-organoid integrated systems for biomedical studies and applications 用于生物医学研究和应用的人工智能有机集成系统
IF 7.4 2区 医学
Bioengineering & Translational Medicine Pub Date : 2024-01-20 DOI: 10.1002/btm2.10641
Sudhiksha Maramraju, Andrew Kowalczewski, Anirudh Kaza, Xiyuan Liu, Jathin Pranav Singaraju, Mark V. Albert, Zhen Ma, Huaxiao Yang
{"title":"AI-organoid integrated systems for biomedical studies and applications","authors":"Sudhiksha Maramraju,&nbsp;Andrew Kowalczewski,&nbsp;Anirudh Kaza,&nbsp;Xiyuan Liu,&nbsp;Jathin Pranav Singaraju,&nbsp;Mark V. Albert,&nbsp;Zhen Ma,&nbsp;Huaxiao Yang","doi":"10.1002/btm2.10641","DOIUrl":"10.1002/btm2.10641","url":null,"abstract":"<p>In this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids. Stem cell-derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error-prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid-based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label-free organoid recognition, and three-dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI-organoid integration, focusing on the establishment of reliable AI model decision-making processes and the standardization of organoid research.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 2","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信