Breeding Science最新文献

筛选
英文 中文
Diversity of salt tolerance in Vigna nakashimae, wild related species of the azuki bean (Vigna angularis). 红豆(Vigna angularis)的野生近缘种 Vigna nakashimae 的耐盐多样性。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-04-01 Epub Date: 2024-03-29 DOI: 10.1270/jsbbs.23050
Eri Ogiso-Tanaka, Sompong Chankaew, Takehisa Isemura, Rusama Marubodee, Alisa Kongjaimun, Akiko Baba-Kasai, Kazutoshi Okuno, Hiroshi Ehara, Norihiko Tomooka
{"title":"Diversity of salt tolerance in <i>Vigna nakashimae</i>, wild related species of the azuki bean (<i>Vigna angularis</i>).","authors":"Eri Ogiso-Tanaka, Sompong Chankaew, Takehisa Isemura, Rusama Marubodee, Alisa Kongjaimun, Akiko Baba-Kasai, Kazutoshi Okuno, Hiroshi Ehara, Norihiko Tomooka","doi":"10.1270/jsbbs.23050","DOIUrl":"10.1270/jsbbs.23050","url":null,"abstract":"<p><p><i>Vigna nakashimae</i> is a wild species closely related to the azuki bean (<i>V. angularis</i>), with salt-tolerance abilities. The present study aimed to explore the genetic and salt tolerance diversity within the species, by evaluating the phylogenetic relationships of 55 accessions of <i>V. nakashimae</i> including 25 newly collected from the Gotō Islands and Iki in Nagasaki Prefecture, Japan. We conducted salt-tolerance analysis for 48 of the accessions, including 18 of the newly collected accessions. Phylogenetic analysis based on single-nucleotide polymorphisms obtained from MIGseq and RADseq analyses revealed the genetic diversity of <i>V. nakashimae</i> to reflect the geographic arrangement of the habitat islands. Korean accessions formed one clade, while Japanese accessions predominantly grouped into Uku Island and Fukue Island subclades. Within this population, we identified \"G4-2\" (JP248291) as the most salt tolerant, surpassing even the previously reported \"Ukushima\" accession. Both accessions collected from Uku Island, with accessions belonging to the Uku Island subclade exhibiting a strong trend of salt tolerance. Our results strongly suggest the occurrence of genetic mutations conferring enhanced salt tolerance in specific clade and region. This study highlights the potential of genetic analyses for identifying regions suitable for collecting valuable genetic resources for stress tolerance.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 2","pages":"166-172"},"PeriodicalIF":2.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the landscape of public attitudes towards gene-edited foods in Japan. 探索日本公众对基因编辑食品的态度。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 Epub Date: 2024-02-22 DOI: 10.1270/jsbbs.23047
Tomiko Yamaguchi, Kazune Ezaki, Kyoko Ito
{"title":"Exploring the landscape of public attitudes towards gene-edited foods in Japan.","authors":"Tomiko Yamaguchi, Kazune Ezaki, Kyoko Ito","doi":"10.1270/jsbbs.23047","DOIUrl":"10.1270/jsbbs.23047","url":null,"abstract":"<p><p>The success or failure of food technologies in society depends to a large extent on the public interest, concerns, images, and expectations surrounding them. This paper delves into the landscape of public attitudes towards gene-edited foods in Japan, exploring the reasons behind the acceptance or rejection of these products. A literature review and preliminary findings from a survey conducted in Japan in 2022, aim to identify key issues crucial for evaluating societal acceptance of gene-edited foods. The study showed that the public view gene-edited foods as somewhat unnatural, but upon closer examination, significant variation in attitudes was observed among respondents. Some respondents expressed a favorable perception towards gene-edited foods, particularly those that benefit consumers, while others expressed concerns about its perceived artificiality. Moreover, a significant number of respondents displayed indifference or lack of clear perspective regarding gene-edited foods. These findings reflect the complex relationship between public attitudes, naturalness, and social acceptance of gene-edited foods. Furthermore, the study indicates the importance of paying close attention to those who refrain from expressing their viewpoints in the survey. This nuanced landscape warrants further exploration.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"11-21"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global regulatory trends of genome editing technology in agriculture and food. 农业和食品基因组编辑技术的全球监管趋势。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 Epub Date: 2024-02-22 DOI: 10.1270/jsbbs.23046
Masashi Tachikawa, Makiko Matsuo
{"title":"Global regulatory trends of genome editing technology in agriculture and food.","authors":"Masashi Tachikawa, Makiko Matsuo","doi":"10.1270/jsbbs.23046","DOIUrl":"10.1270/jsbbs.23046","url":null,"abstract":"<p><p>There is a need to introduce new regulations regarding genome editing technology and its application to agriculture and food. Regulations are different among countries and sometimes inconsistent. Here, we summarize the current regulations regarding the use of genome editing technology in agriculture and food in various countries around the world. We also discuss the main regulatory developments expected to occur in the future.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"3-10"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating the development of genome-edited crops and the establishment of utilization infrastructure. 加快基因组编辑作物的开发和利用基础设施的建立。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 DOI: 10.1270/jsbbs.74.1
Hiroshi Ezura
{"title":"Accelerating the development of genome-edited crops and the establishment of utilization infrastructure.","authors":"Hiroshi Ezura","doi":"10.1270/jsbbs.74.1","DOIUrl":"10.1270/jsbbs.74.1","url":null,"abstract":"","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"1"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scarless genome editing technology and its application to crop improvement. 无痕基因组编辑技术及其在作物改良中的应用。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 Epub Date: 2024-03-09 DOI: 10.1270/jsbbs.23045
Kazuya Ikeda
{"title":"Scarless genome editing technology and its application to crop improvement.","authors":"Kazuya Ikeda","doi":"10.1270/jsbbs.23045","DOIUrl":"10.1270/jsbbs.23045","url":null,"abstract":"<p><p>The advent of CRISPR/Cas9 has had a disruptive impact on the world by bringing about dramatic progress and rapid penetration of genome editing technology. However, even though gene disruption can be easily achieved, there has been a challenge in freely changing the sequence. To solve this problem, various novel technologies have emerged in recent years to realize free rewriting of genome sequences. In this review, scarless editing by two-step HDR, a technology that can freely rewrite genomes from a single nucleotide to more than several thousand nucleotides, will be introduced.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"32-36"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome editing of DWARF and SELF-PRUNING rapidly confers traits suitable for plant factories while retaining useful traits in tomato. DWARF 和 SELF-PRUNING 的基因组编辑可快速赋予番茄适合植物工厂的性状,同时保留番茄的有用性状。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 Epub Date: 2024-04-04 DOI: 10.1270/jsbbs.23063
Ai Nagamine, Hiroshi Ezura
{"title":"Genome editing of <i>DWARF</i> and <i>SELF-PRUNING</i> rapidly confers traits suitable for plant factories while retaining useful traits in tomato.","authors":"Ai Nagamine, Hiroshi Ezura","doi":"10.1270/jsbbs.23063","DOIUrl":"10.1270/jsbbs.23063","url":null,"abstract":"<p><p>Plant factories with artificial light are less affected than open-air areas to environmental factors in crop cultivation and are attracting attention as one of the solutions to the world's food problems. However, the cost of cultivation in plant factories is higher than open-air cultivation, and currently, profitable factory-grown crop varieties are limited to those that are small or have a short growing period. Tomatoes are one of the main crops consumed around the world, but due to their large plant height and width, they are not yet suitable for mass production in plant factories. In this study, the <i>DWARF</i> (<i>D</i>) and <i>SELF-PRUNING</i> (<i>SP</i>) genes of the GABA hyperaccumulating tomato variety #87-17 were genome-edited by the CRISPR-Cas9 method to produce dwarf tomato plants. The desired traits were obtained in the T<sub>1</sub> genome-edited generation, and the fruit traits were almost the same as those of the original variety. On the other hand, the F<sub>2</sub> cross between #87-17 and Micro-Tom containing the <i>d</i> and <i>sp</i> mutations was dwarfed, but the fruit phenotype was a mixture of the traits of the two varieties. This indicates that genome editing of these two genes using CRISPR-Cas9 can efficiently impart traits suitable for plant factory cultivation while retaining the useful traits of the original cultivar.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"59-72"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low asparagine wheat: Europe's first field trial of genome edited wheat amid rapidly changing regulations on acrylamide in food and genome editing of crops. 低天门冬酰胺小麦:在有关食品中丙烯酰胺和作物基因组编辑的法规快速变化的背景下,欧洲首次对基因组编辑小麦进行田间试验。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 Epub Date: 2024-03-20 DOI: 10.1270/jsbbs.23058
Navneet Kaur, Natasha Brock, Sarah Raffan, Nigel G Halford
{"title":"Low asparagine wheat: Europe's first field trial of genome edited wheat amid rapidly changing regulations on acrylamide in food and genome editing of crops.","authors":"Navneet Kaur, Natasha Brock, Sarah Raffan, Nigel G Halford","doi":"10.1270/jsbbs.23058","DOIUrl":"10.1270/jsbbs.23058","url":null,"abstract":"<p><p>We review the undertaking of a field trial of low asparagine wheat lines in which the asparagine synthetase gene, <i>TaASN2</i>, has been knocked out using CRISPR/Cas9. The field trial was undertaken in 2021-2022 and represented the first field release of genome edited wheat in Europe. The year of the field trial and the period since have seen rapid changes in the regulations covering both the field release and commercialisation of genome edited crops in the UK. These historic developments are reviewed in detail. Free asparagine is the precursor for acrylamide formation during high-temperature cooking and processing of grains, tubers, storage roots, beans and other crop products. Consequently, work on reducing the free asparagine concentration of wheat and other cereal grains, as well as the tubers, beans and storage roots of other crops, is driven by the need for food businesses to comply with current and potential future regulations on acrylamide content of foods. The topic illustrates how strategic and applied crop research is driven by regulations and also needs a supportive regulatory environment in which to thrive.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"37-46"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Possibility of genome editing for melon breeding. 基因组编辑用于甜瓜育种的可能性。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 Epub Date: 2024-04-09 DOI: 10.1270/jsbbs.23074
Satoko Nonaka, Hiroshi Ezura
{"title":"Possibility of genome editing for melon breeding.","authors":"Satoko Nonaka, Hiroshi Ezura","doi":"10.1270/jsbbs.23074","DOIUrl":"10.1270/jsbbs.23074","url":null,"abstract":"<p><p>Genome editing technologies are promising for conventional mutagenesis breeding, which takes a long time to remove unnecessary mutations through backcrossing and create new lines because they directly modify the target genes of elite strains. In particular, this technology has advantages for traits caused by the loss of function. Many efforts have been made to utilize this technique to introduce valuable features into crops, including maize, soybeans, and tomatoes. Several genome-edited crops have already been commercialized in the US and Japan. Melons are an important vegetable crop worldwide, produced and used in various areas. Therefore, many breeding efforts have been made to improve its fruit quality, resistance to plant diseases, and stress tolerance. Quantitative trait loci (QTL) analysis was performed, and various genes related to important traits were identified. Recently, several studies have shown that the CRISPR/Cas9 system can be applied to melons, resulting in its possible utilization as a breeding technique. Focusing on two productivity-related traits, disease resistance, and fruit quality, this review introduces the progress in genetics, examples of melon breeding through genome editing, improvements required for breeding applications, and the possibilities of genome editing in melon breeding.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"47-58"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cas12a and MAD7, genome editing tools for breeding. 用于育种的基因组编辑工具 Cas12a 和 MAD7。
IF 2 4区 农林科学
Breeding Science Pub Date : 2024-03-01 Epub Date: 2024-02-22 DOI: 10.1270/jsbbs.23049
Shunya Hozumi, Yi-Chen Chen, Tatsuya Takemoto, Shun Sawatsubashi
{"title":"Cas12a and MAD7, genome editing tools for breeding.","authors":"Shunya Hozumi, Yi-Chen Chen, Tatsuya Takemoto, Shun Sawatsubashi","doi":"10.1270/jsbbs.23049","DOIUrl":"10.1270/jsbbs.23049","url":null,"abstract":"<p><p>Food shortages due to population growth and climate change are expected to occur in the near future as a problem that urgently requires solutions. Conventional breeding techniques, notably crossbreeding and mutation breeding, are known for being inefficient and time-consuming in obtaining seeds and seedlings with desired traits. Thus, there is an urgent need for novel methods for efficient plant breeding. Breeding by genome editing is receiving substantial attention because it can efficiently modify the target gene to obtain desired traits compared with conventional methods. Among the programmable sequence-specific nucleases that have been developed for genome editing, CRISPR-Cas12a and CRISPR-MAD7 nucleases are becoming more broadly adopted for the application of genome editing in grains, vegetables and fruits. Additionally, ST8, an improved variant of MAD7, has been developed to enhance genome editing efficiency and has potential for application to breeding of crops.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 1","pages":"22-31"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of pollen dispersal distance in Job's tears (Coix lacryma-jobi L.) by using red leaf sheath as a morphological marker. 以红色叶鞘为形态标记估算薏米花粉传播距离
IF 2.4 4区 农林科学
Breeding Science Pub Date : 2023-09-01 Epub Date: 2023-09-09 DOI: 10.1270/jsbbs.23016
Katsuhiro Matsui, Takayuki Tamura, Keito Nishizawa, Akiko Ohara-Takada
{"title":"Estimation of pollen dispersal distance in Job's tears (<i>Coix lacryma-jobi</i> L.) by using red leaf sheath as a morphological marker.","authors":"Katsuhiro Matsui, Takayuki Tamura, Keito Nishizawa, Akiko Ohara-Takada","doi":"10.1270/jsbbs.23016","DOIUrl":"10.1270/jsbbs.23016","url":null,"abstract":"<p><p>Job's tears (<i>Coix lacryma-jobi</i> L.) is grown widely in Asian countries and a crop that can fertilize with own pollen and pistils. The grains are used not only for food but also for medicinal purposes. The grain of many cultivars contains glutinous endosperm; only grains with this glutinous endosperm are suitable for use as medicine in Japan. Many wild types have non-glutinous endosperm and can easily cross with cultivar under natural environmental conditions. Because the non-glutinous endosperm trait is dominant to that of glutinous endosperm, F<sub>1</sub> seeds produced by crosses between a cultivar and a wild type have non-glutinous endosperm. To reduce the rate of unwanted crosses, we investigated the pollen dispersal distance by using a red leaf sheath as a morphological marker. When plants were cultivated in rows 70 cm apart, the crossing rate was about 25%-35%. As the distance increased, the crossing rate decreased at a rate that could be fitted to a power approximation in fields without intervening plants and to an exponential equation in fields with intervening plants. Our data could be used as guidelines for preventing unwanted crossing with wild types when growing cultivars.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"1 1","pages":"408-414"},"PeriodicalIF":2.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722094/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66690197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信