{"title":"黄瓜 F2 群体中每节雌花和多雌花性状的遗传图谱和数量性状位点分析。","authors":"Nattawat Anankul, Wannapa Sattayachiti, Namfon Onmanee, Saengchit Chanmoe, Weenun Bundithya, Jutamas Kumchai","doi":"10.1270/jsbbs.23070","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on cucumbers' multi-pistillate flower (MPF) trait, which is essential for high yields. A genetic linkage map was constructed using a population of 219 F<sub>2</sub> plants to analyze quantitative trait loci (QTL) associated with MPF traits. Crossbreeding of EWSCU-809 (MPF) with EWSCU-989 (single pistillate flower: SPF) generated an F<sub>1</sub> hybrid that self-pollinated to form an F<sub>2</sub> population. Based on 244 single nucleotide polymorphic markers across seven cucumber chromosomes, a linkage map facilitated QTL analysis considering average pistillate flowers (PFs) per node and nodes with MPF traits. The results indicated a 9:6:1 epistatic ratio in the F<sub>2</sub> populations, revealing recessive allele control of the MPF trait in gynoecious plants. Three QTLs (<i>qMP2.1</i>, <i>qMP3</i>, <i>qMP7</i>) on chromosomes 2, 3, and 7 were associated with average PFs per node, explaining 5.6 to 10.3% of phenotypic variation. Four QTLs (<i>qMP2.2</i>, <i>qMP3</i>, <i>qMP4</i>, <i>qMP7</i>) on chromosomes 2, 3, 4, and 7 were linked to the presence of nodes with MPF traits, explaining 5.8 to 10.6% of phenotypic variance. Notably, QTL regions overlapped between the two datasets, suggesting pleiotropic effects, particularly on chromosomes 3 and 7. These reliable QTLs have the potential to improve breeding programs, enhance PF development, and increase cucumber yields.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 3","pages":"204-213"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic mapping and quantitative trait loci analysis for pistillate flowers per node and multi-pistillate flower traits in the F<sub>2</sub> cucumber population.\",\"authors\":\"Nattawat Anankul, Wannapa Sattayachiti, Namfon Onmanee, Saengchit Chanmoe, Weenun Bundithya, Jutamas Kumchai\",\"doi\":\"10.1270/jsbbs.23070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focused on cucumbers' multi-pistillate flower (MPF) trait, which is essential for high yields. A genetic linkage map was constructed using a population of 219 F<sub>2</sub> plants to analyze quantitative trait loci (QTL) associated with MPF traits. Crossbreeding of EWSCU-809 (MPF) with EWSCU-989 (single pistillate flower: SPF) generated an F<sub>1</sub> hybrid that self-pollinated to form an F<sub>2</sub> population. Based on 244 single nucleotide polymorphic markers across seven cucumber chromosomes, a linkage map facilitated QTL analysis considering average pistillate flowers (PFs) per node and nodes with MPF traits. The results indicated a 9:6:1 epistatic ratio in the F<sub>2</sub> populations, revealing recessive allele control of the MPF trait in gynoecious plants. Three QTLs (<i>qMP2.1</i>, <i>qMP3</i>, <i>qMP7</i>) on chromosomes 2, 3, and 7 were associated with average PFs per node, explaining 5.6 to 10.3% of phenotypic variation. Four QTLs (<i>qMP2.2</i>, <i>qMP3</i>, <i>qMP4</i>, <i>qMP7</i>) on chromosomes 2, 3, 4, and 7 were linked to the presence of nodes with MPF traits, explaining 5.8 to 10.6% of phenotypic variance. Notably, QTL regions overlapped between the two datasets, suggesting pleiotropic effects, particularly on chromosomes 3 and 7. These reliable QTLs have the potential to improve breeding programs, enhance PF development, and increase cucumber yields.</p>\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":\"74 3\",\"pages\":\"204-213\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.23070\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.23070","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Genetic mapping and quantitative trait loci analysis for pistillate flowers per node and multi-pistillate flower traits in the F2 cucumber population.
This study focused on cucumbers' multi-pistillate flower (MPF) trait, which is essential for high yields. A genetic linkage map was constructed using a population of 219 F2 plants to analyze quantitative trait loci (QTL) associated with MPF traits. Crossbreeding of EWSCU-809 (MPF) with EWSCU-989 (single pistillate flower: SPF) generated an F1 hybrid that self-pollinated to form an F2 population. Based on 244 single nucleotide polymorphic markers across seven cucumber chromosomes, a linkage map facilitated QTL analysis considering average pistillate flowers (PFs) per node and nodes with MPF traits. The results indicated a 9:6:1 epistatic ratio in the F2 populations, revealing recessive allele control of the MPF trait in gynoecious plants. Three QTLs (qMP2.1, qMP3, qMP7) on chromosomes 2, 3, and 7 were associated with average PFs per node, explaining 5.6 to 10.3% of phenotypic variation. Four QTLs (qMP2.2, qMP3, qMP4, qMP7) on chromosomes 2, 3, 4, and 7 were linked to the presence of nodes with MPF traits, explaining 5.8 to 10.6% of phenotypic variance. Notably, QTL regions overlapped between the two datasets, suggesting pleiotropic effects, particularly on chromosomes 3 and 7. These reliable QTLs have the potential to improve breeding programs, enhance PF development, and increase cucumber yields.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.