Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)最新文献

筛选
英文 中文
Insights into cognition from network science analyses of human brain functional connectivity: Working memory as a test case 从人脑功能连通性的网络科学分析中洞察认知:工作记忆作为一个测试案例
D. Dagenbach
{"title":"Insights into cognition from network science analyses of human brain functional connectivity: Working memory as a test case","authors":"D. Dagenbach","doi":"10.1016/B978-0-12-813838-0.00002-9","DOIUrl":"https://doi.org/10.1016/B978-0-12-813838-0.00002-9","url":null,"abstract":"","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73391556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Overlapping and dynamic networks of the emotional brain 情感大脑的重叠和动态网络
L. Pessoa
{"title":"Overlapping and dynamic networks of the emotional brain","authors":"L. Pessoa","doi":"10.1016/B978-0-12-813838-0.00003-0","DOIUrl":"https://doi.org/10.1016/B978-0-12-813838-0.00003-0","url":null,"abstract":"","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82101506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra. 通过fMRI时间过程和光谱的形状分析测量大脑连通性。
David S Lee, Amber Leaver, Katherine L Narr, Roger P Woods, Shantanu H Joshi
{"title":"Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra.","authors":"David S Lee,&nbsp;Amber Leaver,&nbsp;Katherine L Narr,&nbsp;Roger P Woods,&nbsp;Shantanu H Joshi","doi":"10.1007/978-3-319-67159-8_15","DOIUrl":"https://doi.org/10.1007/978-3-319-67159-8_15","url":null,"abstract":"<p><p>We present a shape matching approach for functional magnetic resonance imaging (fMRI) time course and spectral alignment. We use ideas from differential geometry and functional data analysis to define a functional representation for fMRI signals. The space of fMRI functions is then equipped with a reparameterization invariant Riemannian metric that enables elastic alignment of both amplitude and phase of the fMRI time courses as well as their power spectral densities. Experimental results show significant increases in pairwise node to node correlations and coherences following alignment. We apply this method for finding group differences in connectivity between patients with major depression and healthy controls.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36266150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Topological Distances Between Brain Networks. 脑网络之间的拓扑距离。
Moo K Chung, Hyekyoung Lee, Victor Solo, Richard J Davidson, Seth D Pollak
{"title":"Topological Distances Between Brain Networks.","authors":"Moo K Chung,&nbsp;Hyekyoung Lee,&nbsp;Victor Solo,&nbsp;Richard J Davidson,&nbsp;Seth D Pollak","doi":"10.1007/978-3-319-67159-8_19","DOIUrl":"https://doi.org/10.1007/978-3-319-67159-8_19","url":null,"abstract":"<p><p>Many existing brain network distances are based on matrix norms. The element-wise differences may fail to capture underlying topological differences. Further, matrix norms are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to develop network distances that recognize topology. In this paper, we introduce Gromov-Hausdorff (GH) and Kolmogorov-Smirnov (KS) distances. GH-distance is often used in persistent homology based brain network models. The superior performance of KS-distance is contrasted against matrix norms and GH-distance in random network simulations with the ground truths. The KS-distance is then applied in characterizing the multimodal MRI and DTI study of maltreated children.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_19","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36085069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference. 利用拓扑启发的统计推断重新审视自闭症背后的脑网络结构异常。
Sourabh Palande, Vipin Jose, Brandon Zielinski, Jeffrey Anderson, P Thomas Fletcher, Bei Wang
{"title":"Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference.","authors":"Sourabh Palande,&nbsp;Vipin Jose,&nbsp;Brandon Zielinski,&nbsp;Jeffrey Anderson,&nbsp;P Thomas Fletcher,&nbsp;Bei Wang","doi":"10.1007/978-3-319-67159-8_12","DOIUrl":"https://doi.org/10.1007/978-3-319-67159-8_12","url":null,"abstract":"<p><p>A large body of evidence relates autism with abnormal structural and functional brain connectivity. Structural covariance MRI (scMRI) is a technique that maps brain regions with covarying gray matter density across subjects. It provides a way to probe the anatomical structures underlying intrinsic connectivity networks (ICNs) through the analysis of the gray matter signal covariance. In this paper, we apply topological data analysis in conjunction with scMRI to explore network-specific differences in the gray matter structure in subjects with autism versus age-, gender- and IQ-matched controls. Specifically, we investigate topological differences in gray matter structures captured by structural covariance networks (SCNs) derived from three ICNs strongly implicated in autism, namely, the salience network (SN), the default mode network (DMN) and the executive control network (ECN). By combining topological data analysis with statistical inference, our results provide evidence of statistically significant network-specific structural abnormalities in autism, from SCNs derived from SN and ECN. These differences in brain architecture are consistent with direct structural analysis using scMRI (Zielinski et al. 2012).</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Consciousness Level and Recovery Outcome Prediction Using High-Order Brain Functional Connectivity Network. 利用高阶脑功能连接网络预测意识水平和恢复结果。
Xiuyi Jia, Han Zhang, Ehsan Adeli, Dinggang Shen
{"title":"Consciousness Level and Recovery Outcome Prediction Using High-Order Brain Functional Connectivity Network.","authors":"Xiuyi Jia,&nbsp;Han Zhang,&nbsp;Ehsan Adeli,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-67159-8_3","DOIUrl":"https://doi.org/10.1007/978-3-319-67159-8_3","url":null,"abstract":"<p><p>Based on the neuroimaging data from a large set of acquired brain injury patients, we investigate the feasibility of using machine learning for automatic prediction of individual consciousness level. Rather than using the traditional Pearson's correlation-based brain functional network, which measures only the simple temporal synchronization of the BOLD signals from each pair of brain regions, we construct a high-order brain functional network that is capable of characterizing topographical information-based high-level functional associations among brain regions. In such a high-order brain network, each node represents the community of a brain region, described by a set of this region's low-order functional associations with other brain regions, and each edge characterizes topographical similarity between a pair of such communities. Experimental results show that the high-order brain functional network enables a significant better classification for consciousness level and recovery outcome prediction.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36604211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognitive Impairment. 构建多频高阶功能连接网络诊断轻度认知障碍。
Yu Zhang, Han Zhang, Xiaobo Chen, Dinggang Shen
{"title":"Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognitive Impairment.","authors":"Yu Zhang,&nbsp;Han Zhang,&nbsp;Xiaobo Chen,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-67159-8_2","DOIUrl":"https://doi.org/10.1007/978-3-319-67159-8_2","url":null,"abstract":"<p><p>Human brain functional connectivity (FC) networks, estimated based on resting-state functional magnetic resonance imaging (rs-fMRI), has become a promising tool for imaging-based brain disease diagnosis. Conventional low-order FC network (LON) usually characterizes pairwise temporal correlation of rs-fMRI signals between any pair of brain regions. Meanwhile, high-order FC network (HON) has provided an alternative brain network modeling strategy, characterizing more complex interactions among low-order FC sub-networks that involve multiple brain regions. However, both LON and HON are usually constructed within a fixed and relatively wide frequency band, which may fail in capturing (sensitive) frequency-specific FC changes caused by pathological attacks. To address this issue, we propose a novel \"multi-frequency HON construction\" method. Specifically, we construct <i>not only</i> multiple frequency-specific HONs (<i>intra-spectrum</i> HONs), <i>but also</i> a series of cross-frequency interaction-based HONs (<i>inter-spectrum</i> HONs) based on the low-order FC sub-networks constructed at different frequency bands. Both types of these HONs, together with the frequency-specific LONs, are used for the complex network analysis-based feature extraction, followed by sparse regression-based feature selection and the classification between mild cognitive impairment (MCI) patients and normal aging subjects using a support vector machine. Compared with the previous methods, our proposed method achieves the best diagnosis accuracy in early diagnosis of Alzheimer's disease.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36604210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Topological Network Analysis of Electroencephalographic Power Maps. 脑电波功率图的拓扑网络分析
Yuan Wang, Moo K Chung, Daniela Dentico, Antoine Lutz, Richard Davidson
{"title":"Topological Network Analysis of Electroencephalographic Power Maps.","authors":"Yuan Wang, Moo K Chung, Daniela Dentico, Antoine Lutz, Richard Davidson","doi":"10.1007/978-3-319-67159-8_16","DOIUrl":"10.1007/978-3-319-67159-8_16","url":null,"abstract":"<p><p>Meditation practice as a non-pharmacological intervention to provide health related benefits has generated much neuroscientific interest in its effects on brain activity. Electroencephalogram (EEG), an imaging modality known for its inexpensive procedure and excellent temporal resolution, is often utilized to investigate the neuroplastic effects of meditation under various experimental conditions. In these studies, EEG signals are routinely mapped on a topographic layout of channels to visualize variations in spectral powers within certain frequency ranges. Topological data analysis (TDA) of the topographic power maps modeled as graphs can provide different insight to EEG signals than standard statistical methods. A highly effective TDA technique is persistent homology, which reveals topological characteristics of a power map by tracking feature changes throughout a filtration process on the graph structure of the map. In this paper, we propose a novel inference procedure based on filtrations induced by sublevel sets of the power maps of high-density EEG signals. We apply the pipeline to simulated and real data, where we compare the persistent homological features of topographic maps of spectral powers in high-frequency bands of EEG signals recorded on long-term meditators and meditation-naive practitioners.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922271/pdf/nihms875270.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36055385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信