{"title":"Consciousness Level and Recovery Outcome Prediction Using High-Order Brain Functional Connectivity Network.","authors":"Xiuyi Jia, Han Zhang, Ehsan Adeli, Dinggang Shen","doi":"10.1007/978-3-319-67159-8_3","DOIUrl":null,"url":null,"abstract":"<p><p>Based on the neuroimaging data from a large set of acquired brain injury patients, we investigate the feasibility of using machine learning for automatic prediction of individual consciousness level. Rather than using the traditional Pearson's correlation-based brain functional network, which measures only the simple temporal synchronization of the BOLD signals from each pair of brain regions, we construct a high-order brain functional network that is capable of characterizing topographical information-based high-level functional associations among brain regions. In such a high-order brain network, each node represents the community of a brain region, described by a set of this region's low-order functional associations with other brain regions, and each edge characterizes topographical similarity between a pair of such communities. Experimental results show that the high-order brain functional network enables a significant better classification for consciousness level and recovery outcome prediction.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":"10511 ","pages":"17-24"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_3","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67159-8_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Based on the neuroimaging data from a large set of acquired brain injury patients, we investigate the feasibility of using machine learning for automatic prediction of individual consciousness level. Rather than using the traditional Pearson's correlation-based brain functional network, which measures only the simple temporal synchronization of the BOLD signals from each pair of brain regions, we construct a high-order brain functional network that is capable of characterizing topographical information-based high-level functional associations among brain regions. In such a high-order brain network, each node represents the community of a brain region, described by a set of this region's low-order functional associations with other brain regions, and each edge characterizes topographical similarity between a pair of such communities. Experimental results show that the high-order brain functional network enables a significant better classification for consciousness level and recovery outcome prediction.